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ABSTRACT: Chlorination with chlorine is straightforward, highly
reactive, and versatile, but it has significant limitations. In this
Letter, we introduce a protocol that could combine the efficiency
of electrochemical transformation and the high reactivity of
chlorine. By utilizing Cl3CCN as the chloride source, donating
up to all three chloride atom, the reaction could generate and
consume the chlorine in situ on demand to achieve the chlorination of aromatic compounds and electrodeficient alkenes.

Chloride is presented in more than 200 FDA-approved
pharmaceuticals1 that play pivotal roles in treating

respiratory, antiretroviral, cardiovascular, and other death-
causing diseases (Scheme 1a). The introduction of chloride
into molecules could regulate the properties of medicinal
molecules by increasing the lipophilicity and polarity. It was
suggested that the most important biological effect of
nonreactive chlorine stems from substitution on the aromatic,
heteroaromatic, or olefinic moiety.2

The chlorination reaction is one of the most straightforward
approaches to introduce chloride into a molecule.3 Although
chlorine gas is a bulky chemical from the chloralkali industry,
the direct chlorination using excess chlorine gas is limited by
the demanding procedure during handling, the ratio of atom
utilization, and the acidic HCl generated (Scheme 1b). Many
protocols have been developed to achieve chlorination with
control of the chemo-, regio-, and stereoselectivity.3c As the
chlorination of aromatic compounds undergoes a dearomat-
ized transition state with a high barrier, the chloride source
needs preactivation by positive polarization in advance,4 in situ
activation by potent oxidants,5 or anionic activation of the
substrate.6

In addition to this chemistry, the photoredox protocol has
inspired a new way to give reactive chloride species in situ. For
example, the König group reported the photoredox chlorina-
tion of aromatic compounds with HCl7 and N−Cl8 reagents,
respectively. The Hu group reported photoredox chlorination
using NaCl as the chloride source in the presence of sodium
persulfate.9

Recently, electricity-driven transformation has exhibited
tremendous potential,10 and electrochemical chlorination has
achieved a breakthrough featuring the utilization of an inert
and readily available chloride source.11 By using Mn as a
catalyst with metal chloride, the unprecedented radical
dichlorination of alkenes was achieved by the Lin group with
full control of the chemoselectivity.12 The Lei group
investigated the radical chlorination of heteroaromatic

compounds and alkenes using NaCl13 and CCl4.
14 By using

1,2-dichloroethane in the electrocatalysis, the Jiao group
established the chlorination of aromatic compounds including
pharmaceutical compounds.15 In 2019, Browne, Morrill, and
coworkers applied electrochemical Mn catalysis in ring-
opening chlorination.16 An oxydichlorination of alkynes to
α,α-dihaloketones was reported by the Huang group.17 Most
recently, an innovative chlorination of alkenes by merging
shuttle catalysis and paired electrolysis was successfully applied
to remediate a lindane-contaminated solid via a Mn-catalyzed
pathway.18 Despite this progress, chlorination utilizing in-situ-
generated chlorine is still elusive. There were several features in
this approach: First, the rate of generation of chlorine in situ
could be regulated by electrochemical parameters, leading to
the adequate involvement of chlorine with minimum escape
from the reaction and facilitating reaction handling under
ambient conditions. Second, the electrochemical generation of
chlorine is independent of the chlorination reaction and is able
to reach additional substrate scopes. Third, high usage of the
chloride source could be feasible, avoiding the generation of
HCl (Scheme 1c). Herein we report the first example of the
electrochemical chlorination of aromatic compounds and
electron-deficient alkenes with in-situ-generated chlorine in
the on-demand manner.
At the onset of the study, compound 1a was subjected to a

variety of optimizations including the chloride sources,
solvents, and supporting electrolytes (Table 1). When graphite
felt was applied as both the anode and the cathode, Cl3CCN
was applied as the chloride source, and tetraethylammonium
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chloride (TEAC) was applied as the supporting electrolyte,
galvanostatic electrolysis gave product 2a in 97% isolated yield.
Other chlorinated reagents, such as CCl4, CHCl3, DCE, TCCA
(trichloroisocyanuric acid), DCDMH (1,3-dichloro-5,5-dime-
thylhydantoin), and Ca(ClO)2, gave only a trace amount of
product. If tetrabutylammonium salts were used instead of
TEAC, then the isolated yields of 2a dropped to 68−94%.

Next, solvent screening revealed that acetonitrile was the only
solvent to deliver the desired product. If Cl3CCN was absent
from the reaction containing TEAC, then no chlorination took
place, suggesting that only a chloride anion was not adequate
to affect the transformation.
With the optimized conditions, a variety of aromatic

compounds were subjected to the chlorination reaction
(Scheme 2). It was found the chlorination reaction proceeded

smoothly when the aromatic compounds were substituted with
both electron-donating and electron-withdrawing groups (2b−
2f). We were glad to observe that the aldehyde group (2e)
could be tolerated to the extent of 55% isolated yield. A ketone
product 2f was prepared along with an overchlorinated product
in a 10:1 ratio. Next, the dichlorination gave product 2a in 96%
yield, suggesting the Cl3CCN could provide the second
chloride atom. Trichlorination took place to offer 2g with two

Scheme 1. Chloride in Drugs and Chlorination with
Chlorine

Table 1. Conditions Optimization Using Various
Chemicalsa

entry deviation from standard conditions yield (%)b

1 none 97
2 no electricity NDc

3 CCl4, CHCl3, DCE, TCCA, DCDMH, Ca(ClO)2
instead of CCl3CN

trace

4 nBu4NI, nBu4NBr, nBu4NOAc, instead of Et4NCl 68−94
5 no Cl3CCN ND
6 EtOH, MeOH, DCM, THF, DMSO, DMF instead of

MeCN
ND

aReaction conditions: 1a (0.2 mmol), Cl3CCN (0.2 mmol, 1.0 equiv),
Et4NCl (0.5 equiv), CH3CN (5 mL), graphite felt as anode and
cathode, undivided cell, 20 mA/cm3, 2 h, 23 °C. bIsolated yield. cND
= not detected.

Scheme 2. Chlorination of Aromatic Compoundsa

a1 (0.2 mmol), Cl3CCN (0.2 mmol), Et4NCl (0.1 mmol), CH3CN (5
mL), graphite felt as anode and cathode, undivided cell, 20 mA/cm3,
2 h, 23 °C. b10 mA/cm3.
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electron-donating groups in 61% yield. Product 2h incorporat-
ing a silyl ether group that readily decomposed under acidic
conditions could be prepared in 69% yield. Next, the anilines
with other protecting groups were tested under the same
conditions. We were glad to observe that the acid-labile groups,
for example, Boc and Cbz in products 2i−2k, could survive the
electrolysis in ∼60% yields. In the case of product 2l,
dichlorination took place in 75% isolated yield. Product 2m
was obtained in 69% yield, suggesting that the electron-rich
aromatic ring was favored over the α,β-unsaturated alkene. The
phenyl ethers 2n and 2o were produced in good yields by
applying a low current density. A regioselectivity of 3:1 was
observed when naphthalene product 2p was isolated from the
reaction. Free amine could be well tolerated, and the
corresponding product 2q was achieved in 72% yield. Methyl
oestrone was chlorinated to give two regioisomers 2r in a 2:1
ratio. Heterocycles including quinolone, pyridine, caffeine, and
indole underwent this electrochemical chlorination reaction to
give monochlorinated products 2s−2v in moderate to good
yields. Mesitylene was chlorinated with this method, giving a
mixture of mono (2w) and dichloro (2w′) products in 66%
overall yield.
With these protocols, we could prepare a series of

pharmaceutical compounds (Scheme 3a). For example,
anesthetic clibucaine 2x, nootropic meclofenoxin 2y, anti-
inflammatory lonaprofen 2z, antifungal chlordimorine 2aa, and

antidepressant clofexamide 2ab were synthesized. In the case
of 2ab, the chlorination was carried out with Cl2 gas and gave a
mixture of target product and dichlorinated byproduct (SI,
section 5.2.2). The poor solubility of substrate sabotaged the
yield of 2x to some extent. Precursor 2ac of anticonvulsant
nordazepam, 2ad of diagnostic aiding arclofenin, and 2ae of
prokinetic clebopride were prepared in moderate to good
yields, respectively. Next, a reaction employing 0.67 equiv of
Cl3CCN was carried out with 1a as the substrate for 3 h, and
dichlorated product 2a was isolated in 91% yield, suggesting all
three chloride atoms in Cl3CCN were utilized and MeCN was
generated as the side product (Scheme 3b). In another
experiment, the reaction to prepare 2b was conducted on a 1
mol (153 g) scale, giving the product in 90% NMR yield and
73% isolated yield.
To further expand the scope of this method, we attempted

the chlorination of α,β-unsaturated cinnamides 3, which had
not been explored by known protocols (Scheme 4). By using
the standard conditions with 20 mA/cm3 current density, the
dichlorination of cinnamide 3a was realized, giving 4a in 70%
yield as a predominant anti-diastereoisomer confirmed by X-
ray analysis. It was unexpected that when the chlorination of 3a
was carried out with Cl2 gas, 4a was isolated in 8% yield with a

Scheme 3. Synthetic Applications of Electrochemical
Chlorination Reactionsa

a1 (0.2 mmol), Cl3CCN (1.0 equiv), Et4NCl (0.5 equiv), MeCN (5
mL), graphite felt as anode and cathode, undivided cell, 20 mA/cm3,
2 h, 23 °C. Isolated yield. b10 mA/cm3

Scheme 4. Electrochemical Dichlorination of α,β-
Unsaturated Compoundsa

aConditions: 3 (0.2 mmol), Cl3CCN (1.2 equiv), Et4NCl (1.0 equiv),
MeCN (5 mL), graphite felt as anode and cathode, undivided cell, 20
mA/cm3, 2 h, 23 °C, isolated yield.
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syn configuration as the major outcome (syn/anti 5:1; SI,
section 5.2). Next, aniline-derived dichlorocinnamides 4b and
4c were generated in ∼60% yields. A dramatic contrast in
diastereoselectivity between 4b and 4c was observed. We
speculated that the formation of 4b might undergo rigid
intermediates and that the formation of 4c would be more
flexible due to the electronic effect. This electronic effect was
also found in products 4d−4j. Substrates bearing furan and
thiophene moieties could be well tolerated, and corresponding
products 4k and 4l were achieved in acceptable yields with
moderate to good diastereoselectivities. α-Methyl cinnamide
was also converted to the corresponding dichloro product 4m
in 51% yield with a 10:1 dr ratio. Subsequently, product 4n
without a N−H moiety was obtained in 83% yield. The benzyl-
amine-derived product 4o was prepared in 62% yield. Other
α,β-unsaturated compounds, such as ethyl cinnamate, trans-
stilbene, and ethyl 3-phenylpropiolate, were dichlorinated
smoothly, giving products 4p, 4q, and 4r in good yields.
Next, to gain more information on this reaction, we used the

reported12,19 probe 5 to identify the chloride species present in
the reaction. By applying 5 as the substrate, we isolated the
tetra-chlorinated product 6 in 76% yield, which supported the
existence of chlorine; on the contrary, the cyclized product 7 as
an indicator of the chloride radical was not detected (Scheme
5a). In addition, the reaction atmosphere on the 1 mol scale of

1b (Scheme 3b) showed a positive effect in the KI−starch
experiment (SI, section 5), also confirming the presence of
chlorine. Next, cyclic voltammetry (CV) analysis was
performed to elucidate the electrode conditions for the
generation of chlorine. Scan loops with a positive or a negative
start both showed almost identical patterns, suggesting that a
highly predominant pathway could exist (Scheme 5b). In two
mixtures containing acetyl aniline 1b and cinnamide 3a,
respectively, the CVs shared similar peaks at −1.7 V vs SCE
and +1.8 V vs SCE, suggesting the reduction of CCl3CN and
the oxidation of the chloride anion in both cases.
With these results, a plausible reaction pathway is proposed

in Scheme 6. For example, in the chlorination reaction of
aromatic compound 1 (Scheme 6a), at first, the cathodic
reduction of Cl3CCN releases a chloride anion and a neutral
radical A. A second electron transfer to A gives rise to
dichloroacetonitrile anion B. At the anode, the oxidation of

two chloride anion produces chlorine, which in situ reacts with
aromatic compounds and furnishes the final product 2. The
generated chloride anion can be recycled during the next cycle
of anodic oxidation, and the proton can combine with anion B
to give dichloroacetonitrile C. Intermediate C can release the
remaining chloride anion at the cathode in a similar manner to
give chloroacetonitrile D, and, in turn, acetonitrile. In
comparison, the chlorination of α,β-unsaturated compounds
3 shares similarities and differences (Scheme 6b). In this
transformation, the anodic reduction provides the chloride
anion and dichloroacetonitrile anion B. At the anode, chlorine
is produced from both the chloride anion generated at cathode
and that from the supporting electrolyte TEAC. This anodic
oxidation will release a tetraethylammonium cation, which
forms a salt with anion B. The generated chlorine is
independent of the electrochemical process and gives the
final dichlorinated compounds 4 in the manner of electrophilic
addition. Because a proton was not generated during the
chlorination of cinnamide, 1 equiv of TEAC was required to
supply the chloride anion and the ammonium cation. This
chlorination process is independent of the electrochemical
process and might also work in the electrochemical
chlorination of an aromatic compound via the common
chloride anion species.
In summary, we developed an electrochemical chlorination

reaction using Cl3CCN as the chloride source via paired
electrolysis. The reaction proceeds under neutral conditions
and tolerates a variety of functional groups labile under acidic
conditions. This electrochemical reaction utilizes the in-situ-
generated chlorine as a reactive species, making the electro-
chemical process independent of the chemical process in an
on-demand manner. With this approach, both electron-rich
aromatic compounds and electron-deficient α,β-unsaturated
compounds could be efficiently chlorinated. The protocol was
successfully applied in the preparation of commercialized
pharmaceutical products and corresponding intermediates.
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