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Abs t rac t  In this paper, a new approach is presented to find the reference set 
for the nearest neighbor classifier. The optimal reference set, which has minimum 
sample size and satisfies a certain error rate threshold, is obtained through a Tabu 
search algorithm. When the error rate threshold is set to zero, the algorithm ob- 
tains a near minimal consistent subset of a given training set. While the threshold 
is set to a small appropriate value, the obtained reference set may compensate the 
bias of the nearest neighbor estimate. An aspiration criterion for Tabu search is 
introduced, which aims to prevent the search process from the inefficient wandering 
between the feasible and infeasible regions in the search space and speed up the con- 
vergence. Experimental results based on a number of typical data sets are presented 
and analyzed to illustrate the benefits of the proposed method. Compared to con- 
ventional methods, such as CNN and Dasarathy's algorithm, the size of the reduced 
reference sets is much smaller, and the nearest neighbor classification performance 
is better, especially when the error rate thresholds are set to appropriate nonzero 
values. The experimental results also illustrate that the MCS (minimal consistent 
set) of Dasarathy's algorithm is not minimal, and its candidate consistent set is not 
always ensured to reduce monotonically. A counter example is also given to confirm 
this claim. 
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1 I n t r o d u c t i o n  

Nearest Neighbor (NN) classification is one of the important nonparametric classification 
methods and has been studied at length. It is well known that the main drawbacks of 
NN classifiers in practice are their computational demands and requiring a lot of memory. 
Numerous studies have been carried out to overcome these limitations. Dasarathy gives an 
excellent survey on nearest neighbor techniques in his book [11. 

In order to reduce the computational demands, one may appropriately organize the 
given data and use efficient search algorithm. Another approach advocated over the years 
has been the selection of a representative subset of the original training data, or generating a 
new prototype reference set from the available instances, which is called bootstrap method 
in statistics. The objective of reducing the number of reference samples is of course the 
computational efficiency of the classification phase, or /and making the resulted classification 
and generalization more reliable. The very early study of this kind was probably that of 
Hart[ 2J, who presented the "Condensed Nearest Neighbor Rule" (CNN). His method aims 
to ensure that the condensed set is consistent with the original set, i.e., all of the original 
samples are correctly classified by the condensed set under the NN rule. Hart 's  method 
indeed ensures consistency, but the condensed subset is not minimal, and is sensitive to the 
initial ordering of the input samples. Under the same idea of picking appropriate samples 
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from the original data  set onto the reference set by adding and deleting samples, there are 
"Reduced Nearest Neighbor Rule" of Gates[a], and "Iterative Condensation Algorithm" of 
Swonger [41. All these algorithms aim at reducing the size of the condensed set. The method 
proposed by Chang created a reference set by generating new representative prototypes [51. 
These prototypes were not selected from the original set. They  were generated by merging 
the nearest neighbors of the same class as long as such merging did not increase the error rate. 
This is actually a boots t rap method in statistics. The editing algorithm M U L T I E D I T  [61, 
developed by Devijver and Kittler, aims at editing the training samples to make the resulted 
classification more reliable, especially those located near the boundaries between classes. 
MULTIEDIT  has been proven to be asymptotically Bayes-optimal, i.e., when the number 
of samples and the number of repetitions of editing process tend to infinity, the 1-NN 
classification on the edited reference set will lead to Bayesian decision. But  in practice, we 
usually have some finite samples, and the M U L T I E D I T  performance needs to be studied. 

Recently Dasarathy presented a condensing algorithm based on the concept of the Near- 
est Unlike Neighbor Subset (NUNS) [z]. The algorithm introduced a voting mechanism to 
select the Minimal Consistent Set (MCS). Dasarathy claimed that  the candidate consistent 
set is monotonically reducing during the iterative process, and conjectured that  the car- 
dinality of the obtained MCS is the smallest one among all the consistent subsets. This 
optimality of the smallest size of the at tained MCS is also cited in [8]. In this paper  we illus- 
t rate that  this is not true. Though the MCS obtained by Dasara thy 's  algorithm generally 
has less samples, but it is not minimal. We will Mso give a counter example to show that  
the consistent subset is not always monotonically reducing. 

In this paper  we treat  the selection of reference set as an optimization problem, that  is 
to minimize the number of the reference samples while constrained by some error rate of 
classification. We use Tabu Search (TS) to solve this constrained combinatorial  optimization 
problem. In Section 2, the TS algorithm for the optimal  selection of reference set is described. 
The experimental  data  sets are given in Section 3. This is followed by the experimental  
results and analyses in Section 4. A conclusion is given in Section 5. 

2 O p t i m a l  S e l e c t i o n  o f  R e f e r e n c e  S e t  b y  T a b u  S e a r c h  

2.1 O p t i m a l  S e l e c t i o n  o f  R e f e r e n c e  Set  for  N e a r e s t  N e i g h b o r  C l a s s i f i c a t i o n  

The optimal  selection of reference sample set can be described as the following optimiza- 
tion problem. 

Let X = {xl, x 2 , . . . ,  xN} be the original training set for NN classification. Each sample 
has a known class label from the set s = {czt,cz2,... ,tOM}. Let P(X)  denote the power 
set of X,  and S E P(X)  be a selected reference subset. Card(S) denotes the cardinality of 
S. Let the error rate be e(S) when classifying X using S as a reference set, and t be the 
tolerable error rate threshold. The problem can be formalized as follows: 

Find S* such that  Card(S*) = minCard(S), s.t. S E P(X) ,  e(S) <_ t. (1) 

In the following we will use Tabu search to solve this constrained optimization problem. 

2.2 T a b u  S e a r c h  

Tabu search, proposed by Glover [9], is a heuristic method that  can be used to solve 
combinatorial optimization problems. It  has received widespread at tent ion recently. Its 
flexible control framework and several spectacular successes in solving NP-hard  problems 
led to the rapid growth of its application. It differs from the local search in the sense that  
Tabu search allows moving to a new solution which makes the objective function worse in 
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the hope tha t  it will  not  be t r a p p e d  in s u b o p t i m a l  solutions.  T a b u  search uses a s h o r t - t e r m  
memory,  called t a b u  list ,  to record  and guide the  process  of the  search.  In  a d d i t i o n  to the  
t a b u  fist, we can also use long- t e rm memor ies  and a pr ior i  i n fo rma t ion  a b o u t  the  so lu t ions  
to improve the in tens i f ica t ion  and  divers i f icat ion of the  search.  

Tabu  search scheme can be ou t l ined  as follows: s t a r t  wi th  an  in i t ia l  (cur ren t )  so lu t ion  
x, cal led a conf igurat ion,  eva lua te  the  c r i te r ion  funct ion  for t h a t  so lu t ion .  Then ,  follow 
a cer ta in  set of c a n d i d a t e  moves,  called the  ne ighborhood  N ( x )  of the  cur ren t  so lu t ion  x. 
If  the  bes t  of these  moves is not  t abu ,  or if the  bes t  is t a b u  bu t  satisfies the  a sp i r a t ion  
cr i ter ion,  then  pick t ha t  move and  consider  it  to be the  new cur ren t  so lu t ion .  R e p e a t  the  
p rocedure  for a ce r ta in  number  of i te ra t ions .  On t e r m i n a t i o n  the  bes t  so lu t ion  o b t a i n e d  so 
far is the  so lu t ion  of the  T a b u  search. Note  t h a t  the  so lu t ion  t h a t  is p icked at  a ce r ta in  
i t e ra t ion  is pu t  in the  t a b u  list (TL) so t h a t  it  is not  al lowed to be reversed  in the  next  l 
i tera t ions ,  l is the  size of TL. W h e n  the  length  of t a b u  list reaches t h a t  size, t hen  the  first 
so lut ion on TL is freed f rom being  t a b u  a n d  the new solu t ion  enters  t h a t  list.  T L  acts  as a 
sho r t - t e rm  memory.  By  record ing  the h i s tory  of the  searches,  Tabu  s e a r c h  can  cont ro l  the  
d i rec t ion  of the  following searches.  The  asp i ra t ion  cr i te r ion  could  reflect the  value of the  
objec t ive  funct ion,  i.e., if the  t a b u  solut ion resul ts  in a value of  the  ob jec t ive  func t ion  t ha t  
is be t t e r  t han  the  bes t  known so far, then  the  asp i ra t ion  is sat isf ied and  the  t a b u  res t r i c t ion  
is relieved. 

The  f ramework  of a Tabu  search a lgo r i thm can be summa r i z e d  as follows: 

(1) Generate an initial solution Zini t .  Set x . . . .  = Xbest -~- Xinit .  Let k = 1, TL = 9. 
(2) Pick out a certain number of solutions from the neighborhood of z . . . . .  to form a candidate 

solution set N(x  . . . .  ). 
(3) a) If N(x  . . . .  ) = In, goto (2) to regenerate the candidate set. Otherwise, find out the best 

solution y in N ( x  . . . .  ). 
b) If y E TL and y doesn't  satisfy the aspiration condition, let N(x  . . . .  ) = N ( x  . . . .  ) - {y}, 

then goto a). Otherwise, let x r  = y. If y is bet ter  than Zb~t, let Xb~t = x~r~. 
C) If termination condition is satisfied, stop and output the Xbest , otherwise insert x r  to 

the tail  of TL. If TL reaches a predefined size, free the first one. Let k = k + 1. Goto (2). 

For more  de ta i l s  on Tabu  search,  the  reader  is encouraged  to refer to Glover  [9]. 

2 .3  A p p l i c a t i o n  o f  T a b u  S e a r c h  t o  O p t i m a l  S e l e c t i o n  o f  R e f e r e n c e  S e t  

In  this  section,  we present  our Tabu  search-based  a lgo r i thm for reference set select ion 
problem.  

The  reference set is r epresen ted  by a 0/1  bi t  s t r ing,  the  k - th  bi t  denotes  the  presence 
or absence of the  k - th  sample  in the  reference set. Let  S c u r r  , S n e x t  and  S b e s t  be current ,  
next  and  the bes t  reference sets respectively.  TL is a first in first out  t a b u  list.  I t  has a 
predef ined l eng th  l. 

The  reference set select ion a lgo r i thm based  on Tabu  search is as follows: 

(1) Generate an initial solution Siva, set Sr = Sight, Sb~t = X (the original da ta  set). Let 
T L = O .  

(2) Insert the new solution to the tail  of the tabu list, TL = TL U {ScL~rr}. 
(3) Modify the best solution. If e(Scur~) <_ t and Card(S~rr) < Card(Sb~t),  or Card(Scu~) = 

Card(Sbest) and e(Scu~) < e(Sb~t),  then let Sb~t = Sr . . . .  

(4) Search the optimal solution in the neighborhood of S . . . . .  There are two cases: 
If e(Scurr) ~ t, i.e., the S . . . .  satisfies the error rate threshold, search the opt imal  solution 

S ~ t  among all the sets that  simultaneously satisfy the following conditions: i)  S~xt  C Sr . . . .  2) 
Card(Sn~t) = C a r d ( S r  - 1, and 3) S ~ t  ~ TL. That  is all the non-tabu sets generated by 
removing a sample from S ..... respectively. 

If e ( S ~ )  > t, i.e., the S,. .... exceeds the error rate threshold, search the optimal solution 
Sn~t among all the sets that  simultaneously satisfy the following conditions: 1) S~r~ C Sn~,:t, 2) 
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Card(Snext) -~ Card(Scurr) -J- 1, and 3) Snext ~ TL. Tha t  is all the  non- tabu  sets generated by 
adding a sample to Scurf respectively. 

The criteria of optimality in adding or removing a sample will be explained in detail afterwards. 
(5) Let Scurr = Snext, goto (2). 
The termination condition is a predefined number of iteration rounds or /and  that there 

is no improvement of the solutions in some successive rounds. 
In adding or deleting a sample, the following three properties of the condensed reference 

subset are considered: 
1) The change of the classification error rate before and after adding or deleting a sample. 
2) The change of the classification of the samples which are wrongly classified before 

adding a sample into the condensed reference subset. 
3) The distance between the original data set and the resulted reference subset from or 

into which a sample is deleted or added. The distance between the resulted reference subset 
and the original data set is defined as the sum of the distances between each sample in 
the original data set and its nearest sample of the same class in the reference subset. The 
intention of doing so is to select the representative samples which are near to the cluster 
center of the samples. 

In searching the optimal Sne• among all the candidate sets generated by adding a sample 
to Sr .. . .  we use the following two criteria. 

C r i t e r i o n  1. Search the Sne• of the minimal error rate in the candidate sets. If 
e(Snext) < e(S . . . .  ), then Snext is the optimal solution in the candidate sets. If there are two 
or more solutions having the minimal error rate, then select the one that has the minimal 
distance from the original data set. The distance is defined as above. 

C r i t e r i o n  2. For the minimal error rate Sn~xt in the candidate sets, if e(Sn~• >__ 
e(Scurr), then consider selecting such samples which could correctly classify at least one of 
the samples that are wrongly classified by Scurr. Among such candidate samples, select the 
sample with minimal error or minimal distance. If all the candidate samples are in TL, then 
aspirate the best (minimal error) one among them. The purpose of Criterion 2 is preventing 
adding many redundant samples. If only based on Criterion 1, many redundant samples may 
be added. Though they do not deteriorate the classification, but have no help. Adopting 
aspiration operation is to avoid the meaningless exchange of samples between the feasible 
and infeasible areas of the solution space. We will explain this in more detail in Section 4. 

The case of deleting a sample from S~urr is relatively easy. We may use a criterion similar 
to the above Criterion 1 to select the sample to be deleted based on the minimal error rate 
and minimal distance between the two sets. 

The initial reference set of Tabu search may be null set, randomly generated set, or the 
result of other algorithm. It is not recommended to use the full original data set, that will 
take more time to converge. 

3 Test  D a t a  Set  

Seven data  sets were used to test the new TS-based methodology. These data  sets have 
broad scope in property as shown in Table 1. We have carried out two types of experiments 
on these data sets. In the first type of experiments, we set the error rate threshold equal 
to zero. Thus the resulted reference sets are the consistent subsets of the original data sets. 
The second type of experiments uses a small nonzero error rate threshold, and independent 
training and test data sets. The sizes of the obtained reference sets and error rates for 
independent test data sets are used to compare the proposed algorithm with the CNN 
and Dasarathy's algorithms. (In the following we will call Dasarathy's algorithm as MCS 
algorithm also. The meaning of MCS can be found from the context.) 
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Data Dimension 
IRIS 4 
I-I 6 
RING 2 
DIAGONAL 
INTERVAL 5 
NESS i0 
VMD i0 

Classes 

3 

2 

2 

2 

2 

2 

The seven data sets are as follows. 

(I) The Iris data set (IRIS) 

Table 1. Data Set 
Number of Samples (Training/Test) Parameters 

150 . - -  . 
300/3000 n = 6, ~ = 2.56 
180/3000 r l  = l , r2 = 2, r3 = 3 
100/2000 n = 2,/z = 3.5 
300/3000 n = 5 
300/3000 n = 10, A = 2.0 
200/2000 n = 10, tt = 3.0 

The  F isher ' s  Ir is  d a t a  set contains  150 4-d imens iona l  fea ture  vectors  from th ree  classes: 
Setosa,  Virginica,  and  Versicolor. Each class conta ins  50 samples .  

(2) The  I-I d a t a  set (I-I) 
The  I-I d a t a  set was used by F u k u n a g a  and  H a m a m o t o  in [10, 11]. The  samples  were 

i ndependen t ly  gene ra t ed  from two classes of n -d imens iona l  no rma l  d i s t r i bu t ions  N(#i, Ei) ,  
i = 1, 2. The  p a r a m e t e r s  are: 

~1 = [ 0 , . . . , 0 1 % m  = [ ~ , 0 , - . - , 0 ]  T,r~l  = r ~  = I~. 

Here Pl  is the  n -d imens iona l  zero vector  and  I~ is the  n x n iden t i ty  ma t r ix .  The  value 
# controls  the  over lap  between the  two d i s t r ibu t ions .  We used # = 2.56 in the  exper iments ,  
which led to a Bayes  error  ra te  of 10%. W h e n  the  d imens iona l i ty  of t i le  d a t a  changes,  the  
Bayes error  ra te  remains  unchanged  for a fixed #. 

(3) The  r ing-shaped  d a t a  set (RING)  
This  is a two-class p r o b l e m  defined in 2-d imens iona l  plane.  The  

classes are c i rcumscr ibed  by three  circles of rad i i  r l ,  r2 and  r3 respec- 
t ively (F ig . l ) .  One class is represen ted  by the  gray  areas,  and  the 
)ther class by white  ring. Samples  are un i fo rmly  d i s t r i b u t e d  over the 

cor responding  areas. 
Fig.1. Ring data set. (4) The  d iagonal  d a t a  set ( D I A G O N A L )  

I t  is a two-class,  2-dimensional  d a t a  set. Each  class consists  of two no rma l  d i s t r ibu t ions  
as follows: 

1 N  1 N  p l ( x ) = ~  ( ~ 1 1 , I ~ ) + ~  (~12,s~), 

1 N  1 N  p2(x) - -  ~ (~71,I~) + ~ (u~: ,s . ) ,  

where m l  = [0, 0] T, u12 = [u, ~]T, m~ = [U, 0] T, m2 = [0, ~]z. The Bayes error rate of this 
d a t a  set is d e t e r m i n e d  by #. We used # = 3.5 in the  exper iments .  

(5) The  in te rva l  d a t a  set ( INTERVAL)  
I t  is a two-class  d a t a  set taken  from [10]. 

as follows: 

1 
px(x) = ~1v(~11, 

p2(x) = ~N(ml, 

Each  class consists of two norma l  d i s t r ibu t ions  

1 /~) + ~N(~12, S~), 

1 N s~) + ~ (~22, z~), 

where  #11 = [0, 0 , . . . , 0 ]  T, #12 = [ 6 . 5 8 , 0 , . . . , 0 ]  T, #21 = [ 3 . 2 9 , 0 , . . . , 0 ]  T, #22 = [ 9 . 8 7 , 0 , . . . , 0 ]  T 
Even when the  d imens iona l i ty  of the  d a t a  changes,  the  Bayes error  ra te  of this  d a t a  set re- 
mains  at  7.5%. 

(6) The  Ness d a t a  set (NESS) 
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This  d a t a  set was used in [12] by Ness. The  samples  were i n d e p e n d e n t l y  genera ted  from 
two n-d imens iona l  no rma l  d i s t r ibu t ions  N ( p i ,  Ei)  wi th  the  following p a r a m e t e r s :  

#1 = [ 0 , . . . , 0 ]  T ,p2  = [A/2,0, . . . ,O, A/2]  T, (4,/20) 
= = I i  21 In,  E2 0 ~ ~/2 

where A is the  Maha l anob i s  d i s tance  be tween  class wl and  class a~2. The  Bayes  error  ra te  
varies depend ing  on the  value of A as well as n. 

(7) The  V M D  d a t a  set (VMD) 
This  d a t a  set was i ndependen t ly  genera ted  f rom two n -d imens iona l  n o r m a l  d i s t r ibu t ions  

N ( # i ,  Ni),  i = 1,2. The  mean  vector  of the  second class is decreased  by degrees:  

E0, [., 2 ' 3 ' ' " '  , 21  = 2 2 = L ~ .  

Table  1 summar izes  the  seven d a t a  sets inc luding  the  d imens ion ,  number  of classes, 
number  of samples ,  and  the  values of pa rame te r s .  In  the  t r a in ing  set of R I N G ,  the  numbers  
of samples  of two classes are 120 and 60 respect ively,  and  2000,1000 in the  tes t  set. In  o ther  
d a t a  sets, the  numbers  of t r a in ing  samples  and tes t  samples  are equal.  

4 Exper imenta l  Resul ts  and Analyses  

4.1 T h e  O p t i m a l  C o n s i s t e n t  Se t  O b t a i n e d  b y  T a b u  S e a r c h  

Se t t ing  the  error  ra te  th resho ld  to zero, Tabu  search can select the  o p t i m a l  (min imal )  
consis tent  sets. The  resul ts  cor responding  to these seven d a t a  sets are shown in Table  2. 
The  Euc l idean  d i s tance  is used in these exper iments .  The  classif icat ions are  made  by 1-NN. 
For  compar i son ,  we i m p l e m e n t e d  the CNN and  MCS a lgor i thms  and  the  resul t s  are also 
shown in Table  2. For  CNN me thod ,  we show the  best  and  the average resul t s  in 10 runs.  
The  in i t ia l  so lu t ions  of Tabu  search were null set  or r a n d o m l y  genera ted .  For  r a n d o m l y  
genera ted  in i t ia l  solut ions,  10 runs  were execu ted  on each d a t a  set. Table  2 lists the  bes t ,  
the  worst ,  a n d  the  average results ,  along wi th  the  s t a n d a r d  devia t ions .  For  null  set in i t ia l  
solut ion,  T a b u  search only  runs once, as the  Solution is unique  according  to  our  T S - b a s e d  
a lgor i thm.  In  exper iments ,  the lengths  of the  TL are set to  equal  the  n u m b e r  N of samples  
in the  t r a in ing  sets respectively.  The  t e r m i n a t i o n  condi t ion  is 2 N  t imes of i t e ra t ions  or t h a t  
dur ing  N t imes  of i tera t ions .  There  is no. improvemen t  of the  solut ions.  

Data Set 

IRIS 
I-I 
RING 
DIAGONAL 
INTERVAL 
NESS 
VMD 

Table 2. Consistent Set Obtained by CNN, MCS 
Original CNN TS (null 
Samples Best Average MCS initial set) rn 

150 18 19.8 15 15 15 
300 90 97.4 74 62 30 
180 44 51.0 43 28 18 
100 12 16.2 13 6 10 
300 98 104.1 89 58 30 
300 67 72.6 46 29 30 
200 29 34.4 23 4 20 

and Tabu Search 
TS (random rn samples) 

Best Worst Average (+s.d.) 
11 15 14.0(4-0.8) 
55 71 63.1(-t-5.0) 
26 35 30.7(-t-3.1) 
6 10 7.5(• 

57 72 68.8(4-4.4) 
26 39 33.9(:h3.9) 
4 13 7.7(4-2.6) 

From Tab le  2, we see tha t  the  derived consis tent  sets by  CNN have more  samples  t han  
those by  M C S  and  TS. As previously  ment ioned ,  CNN is also sensit ive to the  order  of 
samples.  Meanwhi l e  MCS m e t h o d  resul ted  in smal ler  consis tent  sets t h a n  CNN (except  
D I A G O N A L  d a t a  set).  But  the  resul ted  consis tent  sets of MCS are not  min imal .  The  
TS m e t h o d  o b t a i n e d  even smal ler  sets t han  those of MCS for all of the seven d a t a  sets. 
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T h o u g h  to some ex ten t  TS is sensi t ive to  the  in i t ia l  solut ions,  bu t  even in the  worst  case, 
the  consis tent  set is st i l l  smal ler  t han  t h a t  of MCS (for IRIS,  it  is the  same) .  

Based  o n t h e  above  expe r imen t a l  resul ts ,  we analyze  the  MCS m e t h o d  and  the  a sp i r a t i on  
cr i te r ion  of T a b u  search fur ther .  

1) In  [7] D a s a r a t h y  c la imed tha t  t hough  no formal  m a t h e m a t i c a l  p roo f  was es tab l i shed ,  
bu t  he t ended  to consider  the  MCS to be the  op t ima l ,  i.e., the  MCS could  a t t a i n  the  
t rue  min ima l i t y  of the  consis tent  subset  size. Kuncheva  also quoted  this  m i n i m a l i t y  in [8]. 
However,  the  above expe r imen t s  show t h a t  the  consis tent  subsets  o b t a i n e d  by  MCS are not  
minimal .  For  example ,  for IRIS d a t a  set the  MCS ob ta ined  def ini te ly  cons is ten t  subse t  
conta in ing  15 samples  (see [7] and  our  Table  2), bu t  our  TS-based  m e t h o d  o b t a i n e d  a subse t  
conta in ing  only 11 samples .  

2) In  MCS me thod ,  D a s a r a t h y  m a i n t a i n e d  a cand ida t e  consis tent  set cons is t ing  of all  
samples  e i ther  (a) which were a l r eady  presen t  in the  current  consis tent  set,  or (b) whose 
inclusion would not  c rea te  inconsistency.  He asser ted  t ha t  the  samples  in the  cons is ten t  
set are  mono ton ica l ly  reducing.  In  our  expe r imen t s  we found tha t  D a s a r a t h y ' s  effort is 
not  always effective, and  the  number  of samples  in the  consis tent  set increases  somet imes .  
Since af ter  recount ing  the  NUN (Neares t  Unlike Nerghbor)  d is tances  of each ins tance  and  
revot ing,  the  order  of the  most  voted  sample  may  change. This  will cause the  cons is ten t  set 
not  to  reduce monotonica l ly .  In  the  following we give an example  to i l lus t ra te  th is  s i tua t ion .  

G 
.m oo • - ' ' -  

�9 First class 
o Second dassj 

albl dl f l  
"- ' -  2. 02 ,  "- X 

C1 el 

Coordinates 
Sample point Class x y 

O 1 0.0 0.0 
al 1 1.0 0.0 I 
bl 1 1.3 0.0 
ct 2 1.9 0.0 
dt 2 2.4 0.0 
e1 2 2.7 0.0 
ft 1 3.2 0.0 

Fig.2. A counter example to monotonically reducing. 

Fig.2 is a d a t a  set of two classes. The  samples  are  loca ted  on the  x and  y axes. The  
coord ina te  values of the  samples  on the  posi t ive  x-axis  are shown in the  t ab le  of Fig.2.  The  
o ther  samples  are r o t a t e d  images  of the  samples  on the posi t ive  x-axis .  For  convenience,  
group the  po in ts  t ha t  are  symmet r i ca l  a b o u t  the  origin to form a set,  and  call  t h e m  as 
O, A, B,  C, D,  E ,  F respect ively.  Accord ing  to D a s a r a t h y ' s  a lgor i thm,  in the  first i t e r a t i on  
each po in t  in the  set O, A - F has an NUN dis tance  and gets a vote as follows ( ident ica l  
for the  samples  in the  same set) .  

Point O at bl cl dt el f1 
The Vote 1 3 3 2 3 2 1 

NUN Distance 1.9 0.9 0.6 0.6 0.8 0.5 0.5 

So the  a lgo r i t hm ob ta ins  A U D W F as the  cand ida t e  consis tent  set, and  i ts  size is 12. 
The  second i t e r a t i on  recounts  the  NUN dis tances  and  revotes.  At  this  t ime  each po in t  in A 
votes O, so the  vote of O is 5. The  votes and  NUN dis tances  of each po in t  are  as follows: 

Point O al bl cl dl el ft 
The Vote 5 3 3 2 3 3 1 

NUN Distance 2.4 1.4 1.1 0.9 0.8 0.5 0.8 

Then  the c a n d i d a t e  consis tent  set becomes  O U A U D tO F .  Accord ing  to D a s a r a t h y ' s  
a lgor i thm,  the  most  voted sample  O in this  c and ida t e  consis tent  list should  be des igna ted  as 
a m e m b e r  of a newly  selected consis tent  set, and  this will not  create  any new inconsis tencies .  
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So the second iteration gives a consistent set of O [3 A U D t2 F. Its size is 13, larger than 
the previous size. This conflicts with the claim of [7]. 

Since the above reason, the sizes of the MCS listed in Table 2 are not the final results, 
they are the minimum ever obtained in iterations. We found that in most cases the MCS is 
monotonically reducing, but there are exceptions sometimes. 

3) In solving constrained optimization, the search process often wanders between the 
feasible and infeasible regions in the solution space. This decreases the efficiency of search 
algorithm. As described in Subsection 2.3, we use an aspiration criterion to avoid the 
meaningless exchange of samples between the candidate consistent set and the rest samples. 
Here we give an example to illustrate the advantage of introducing this aspiration criterion. 

Suppose a is such a sample that it won't  be correctly classified unless it by itself is in the 
reference set. B = {bl, b~,..., bk} is a cluster of samples of a class. Provided anyone of B is 
in the reference set, it can classify all samples of B. Suppose Tabu search obtains a reference 
set S, which satisfies the error rate threshold, and a, bl E S. The next step of TS will try to 
remove a sample from S. After calculation removing a will lead to the minimal error rate. 
So TS obtains the subset S - {a} (signs ' - '  and ' + '  denote deleting or adding a sample). 
Suppose the classification error rate of this set becomes larger than the threshold, then TS 
will add a sample to the reference set. If there is not aspiration criterion, TS will add a 
redundant sample b2 as S is tabu (a, bl E S is in the tabu list). After this the error rate 
still doesn't satisfy the threshold, it is needed to add sample further, then a is added, and 
a subset S + {b2} is obtained. It satisfies the threshold. Afterwards, TS algorithm deletes 
bl, obtains S + {b2} - {bl} (it is not tabu). So the search process would be 

S -+ S - {a} --+ S -  {a} + {b2} --+ S + {b2} --+ S + {b2} - {bl} . . .  

These search steps only replace bt with b2, and such meaningless replacements will con- 
tinue. Since S + {b2} - {bl} satisfies the threshold, the next step will remove a, and the 
process may be as follows: 

S - + . - -  -+ S + {b2} - {bl} - + . - .  --+ S + {ba} - {bl} --+ ' "  -+ S + {bk} - { b t } ' -  

Obviously, these processes would decrease the efficiency of the algorithm, especially when 
the tabu list is short, the algorithm would be trapped into meaningless exchanges of samples 
between feasible and infeasible solution regions. 

In these cases, we hope that the search process will add a again and try to remove another 
sample after removing a fails. Through introducing the aspiration criterion described in 
Subsection 2.3, we can achieve the desired search process. For example, when TS obtains 
S - {a}, as adding any b~ E B (i = 1, ...., k) cannot improve the error rate and correctly 
classify any wrongly classified sample by S - {a}, the algorithm will aspirate S not to be 
tabu, then it will start a new search path. Since at this time S - {a} becomes tabu, the 
algorithm will try to remove some other sample from S, and avoid the inefficient exchanges 
of samples. 

4.2 C lass i f i ca t ion  P e r f o r m a n c e  of  t h e  R e d u c e d  R e f e r e n c e  Set  

In the above section, we set the error rate threshold to be zero and obtained the consistent 
set of the original data set. However in practice due to the finite sample size the performance 
of the consistent set may not necessarily be the best in the operational phase of classifying 
an independent test data set. Fukunaga and Hummels show that the 1-NN estimates may 
be severely biased even for the large sample size if the dimensionality of the data is large [13I. 
They recommend a decision threshold t to take into account the bias in density estimation [141. 
That  is, the decision rule can be modified as: classify x into class a~k if 

iS(x[wk) > ~(xlwj) + t, for all j = 1 , . . . , rn ,  j ~i k 
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where ~b(x[.) denotes the es t imated density. But  the opt imal  selection of the decision thresh- 

old t is difficult because of its complexity. In  this section we set the error ra te  threshold 
to be a small  nonzero value, and investigate the reference sample  reduc t ion  ra te  and the 
classification performance of the condensed reference subset.  

In  the following experiments ,  the error rate thresholds were set to t = 0.00, 0.05 and 
0.10 respectively. The  t ra in ing  da ta  sets and  test da ta  sets are independent .  For different 

thresholds and da t a  sets, repeat  TS five times, one of t hem uses null  set as ini t ia l  set, 
the other  four t imes use r andomly  selected samples as ini t ia l  sets. Use the reference sets 
resul ted from the t ra in ing  sets, classify the samples of the test  da ta  sets respectively, and  
the exper imenta l  results are summarized  in Table 3. For comparison,  we also conduc ted  the 
1-NN classification on all da ta  sets, and  the CNN, MCS methods  which used independen t  
t r a in ing  and  test da t a  sets. These exper imenta l  results are also listed in Table 3. The  IRIS1 
and IRIS2 are two r andom par t i t ions  of the IRIS da ta  set. The i r  numbers  of t r a i n i n g / t e s t  
samples are 30/120 and  75/75 respectively. 

Table 3. Classification Performance of the Condensed Sets 

Tabu 
(t = O.lO) 

Data Sets 
Algorithms ~ . _ _ _ _ . ~  

Original Training Set Size 
1-NN Error rate (%) 

Cond. subset size (average) 
CNN 

Error rate (average) (%) 
Cond. subset size 

MCS 
Error rate (%) 

Cond. subset size (average) 
Tabu Best 

Error rate 
(t = 0.0) Worst 

(%) Average 
Cond. subset size (average) 

Tabu Best 
(t --- 0.05) I Err~ rate Worst 

(%) Average 
Cond. subset size (average) 

Best 
Error rate 

Worst 
(%) Average 

DIA- INTER- 
IRIS1 IRIS2 I-I RING NESS VMD 

GONAL VAL 
30 75 300 :180 100 300 300 200 
4.17 4 .00  17.73 9.44i 8 . 7 5  13.07 9.10 6.75 
7.1 12.4 97.4 51.0 16.2 104.1 72.6 34.4 
5.12 8 .43  20.54 12.17 11.94 16.71 14 .24  10.48 
6 9 74 43 13 89 46 23 
6.67 12.00 21.27 11.73 10.60 1 8 . 7 3  15 .50  9.45 
4.0 8.2 63.0 30.4 7.4 67.8 33.4 7.3 
3.33 6 .67  19.23 10.17 12.90 1 5 . 5 7  12 .10  4.90 
5.00 12.00 21.03 12.93 6.55 18.30 1 4 . 9 7  7.55 
3.67 8 .27  20.23 11.19 10.28 1 7 . 0 4  13 .80  6.36 
4.0 3.0 11.4 13.6 4.0 12.2 2.0 2.0 
3.33 4 .00  12.47 10.07 6.50 9.Z3 7.70 5.45 
5.00 4 .00  16.60 14.20 8.70 13.60 7.70 5.45 
4.00 4 .00  14.63 12.75 7.55 11.23 7.70 5.45 
3.0 3.0 2.6 9.8 4.0 4.0 2.0 2.0 

10.00 4 .00  11.33 13.40 5.50 9.33 7.70 5.45 
12.50 4 .00  12.67 19.97 7 . 5 0  12.40 7.70 5.45 
11.33 4 .00  11.95 16.36 6.57 10.54 7.70 5.45 

From Table 3 we see tha t  when t = 0.00, the sizes of the condensed consis tent  sets are 
smaller t h a n  those of CNN and MCS. W h e n  t = 0.05, the sizes of the condensed sets are 
much smaller t h a n  those of t = 0.00, and the condensed subsets for NESS and  VMD are 

ra ther  ra t ional ,  their  classification performances approach the Bayes errors. W h e n  t = 0.10, 
the DIAGONAL,  I-I and  INTERVAL obta in  qui te  ra t ional  reference sets, their  sizes and  
classification performances  are superior to those of t = 0.00. 

From the exper imenta l  results we also observe tha t  for different da ta  sets the appropr ia te  
threshold t is also different. It depends on the da ta  dis t r ibut ion.  For example,  the RING 
da ta  set needs more  samples as reference prototypes.  Therefore as t increasing, the n u m b e r  
of reference samples  becomes smaller, and  this may incur  the increase of the error rate.  For 
IRIS1 da ta  set, the classification performance at t = 0.10 is also deteriorated.  Through  
experiments ,  we observe that  for the da ta  sets used above the appropr ia te  thresholds are as 
follows: 

] DataSet IRIS I - I  RING DIAGONAL INTERVAL N E S S  VMD 

I Threshold 0.05 0.10 0.00 0.10 0.10 0.05 0.05 

In  exper iments ,  it was also shown that  the sample dis t r ibut ions  of the condensed reference 
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subsets by Tabu search are quite rational. Fig.3 shows the sample point distributions of the 
original DIAGONAL data set and the condensed reference subsets by CNN, MCS and TS 
(t = 0.00, 0.05 and 0.10) respectively. 
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Fig.3. Di s t r ibu t ion  of D I A G O N A L  and its condensed subsets.  (a) Diagnal  d a t a  set. (b) Resul t  of CNN. (e) 

Resul t  of MCS. (d) Result  of TS (t = 0.0). (e) Resul t  of TS (t = O.O5). (f) Resul t  of TS (t = 0.01). 

5 C o n c l u s i o n  

~Ve have used TS to select the optimal reference subset for the nearest neighbor clas- 
sification. The performance of the proposed algorithm was demonstrated for several data 
sets. It is shown that the proposed algorithm outperforms the CNN and MCS in the refer- 
ence sample reduction rate and classification performance. We have also demonstrated that 
the minimal consistent set of Dasarathy's algorithm is generally not truly minimal, and his 
claim of monotonical ly  reducing of the consistent set size is not always true. We feel that 
the TS-based condensing method significantly reduces the size of the reference set without 
losing the classification accuracy. Therefore the TS-based method should be considered as 
a promising tool  in the NN classifier design. 
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