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Abstract In this paper, a new approach is presented to find the reference set
for the nearest neighbor classifier. The optimal reference set, which has minimum
sample size and satisfies a certain error rate threshold, is obtained through a Tabu
search algorithm. When the error rate threshold is set to zero, the algorithm ob-
tains a near minimal consistent subset of a given training set. While the threshold
is set to a small appropriate value, the obtained reference set may compensate the
bias of the nearest neighbor estimate. An aspiration criterion for Tabu search is
introduced, which aims to prevent the search process from the ineflicient wandering
between the feasible and infeasible regions in the search space and speed up the con-
vergence. Experimental results based on a number of typical data sets are presented
and analyzed to illustrate the benefits of the proposed method. Compared to con-
ventional methods, such as CNN and Dasarathy’s algorithm, the size of the reduced
reference sets is much smaller, and the nearest neighbor classification performance
is better, especially when the error rate thresholds are set to appropriate nonzero
values. The experimental results also illustrate that the MCS (minimal consistent
set) of Dasarathy’s algorithm is not minimal, and its candidate consistent set is not
always ensured to reduce monotonically. A counter example is also given to confirm
this claim.

Keywords nearest neighbor classification, Tabu search, reference set

1 Imtroduction

Nearest Neighbor (NN) classification is cne of the important nonparametric classification
methods and has been studied at length. It is well known that the main drawbacks of
NN classifiers in practice are their computational demands and requiring a lot of memory.
Numerous studies have been carried out to avercome these limitations. Dasarathy gives an
excellent survey on nearest neighbor techniques in his book(!.

In order to reduce the computational demands, one may appropriately organize the
given data and use efficient search algorithm. Another approach advocated over the years
has been the selection of a representative subset of the original training data, or generating a
new prototype reference set from the available instances, which is called bootstrap method
in statistics. The objective of reducing the number of reference samples is of course the
computational efficiency of the classification phase, or/and making the resulted classification
and generalization more reliable. The very early study of this kind was probably that of
Hart?l, who presented the “Condensed Nearest Neighbor Rule” (CNN). His method aims
to ensure that the condensed set is consistent with the original set, i.e., all of the original
samples are correctly classified by the condensed set under the NN rule. Hart’s method
indeed ensures consistency, but the condensed subset is not minimal, and is sensitive to the
initial ordering of the input samples. Under the same idea of picking appropriate samples
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from the original data set onto the reference set by adding and deleting samples, there are
“Reduced Nearest Neighbor Rule” of Gates!®!, and “Iterative Condensation Algorithm” of
Swonger!¥l. All these algorithms aim at reducing the size of the condensed set. The method
proposed by Chang created a reference set by generating new representative prototypes!®).
These prototypes were not selected from the original set. They were generated by merging
the nearest neighbors of the same class as long as such merging did not increase the error rate.
This is actually a bootstrap method in statistics. The editing algorithm MULTIEDIT®!,
developed by Devijver and Kittler, aims at editing the training samples to make the resulted
classification more reliable, especially those located near the boundaries between classes.
MULTIEDIT has been proven to be asymptotically Bayes-optimal, i.e., when the number
of samples and the number of repetitions of editing process tend to infinity, the 1-NN
classification on the edited reference set will lead to Bayesian decision. But in practice, we
usually have some finite samples, and the MULTIEDIT performance needs to be studied.

Recently Dasarathy presented a condensing algorithm based on the concept of the Near-
est Unlike Neighbor Subset (NUNS)!”). The algorithm introduced a voting mechanism to
select the Minimal Consistent Set (MCS). Dasarathy claimed that the candidate consistent
set is monotonically reducing during the iterative process, and conjectured that the car-
dinality of the obtained MCS is the smallest one among all the consistent subsets. This
optimality of the smallest size of the attained MCS is also cited in [8]. In this paper we illus-
trate that this is not true. Though the MCS obtained by Dasarathy’'s algorithm generally
has less samples, but it is not minimal. We will also give a counter example to show that
the consistent subset is not always monotonically reducing.

In this paper we treat the selection of reference set as an optimization problem, that is
to minimize the number of the reference samples while constrained by some error rate of
classification. We use Tabu Search (TS) to solve this constrained combinatorial optimization
problem. In Section 2, the TS algorithm for the optimal selection of reference set is described.
The experimental data sets are given in Section 3. This is followed by the experimental
results and analyses in Section 4. A conclusion is given in Section 5.

2 Optimal Selection of Reference Set by Tabu Search

2.1 Optimal Selection of Reference Set for Nearest Neighbor Classification

The optimal selection of reference sample set can be described as the following optimiza-
tion problem.

Let X = {z1,%3,...,zn} be the original training set for NN classification. Each sample
has a known class label from the set 2 = {w;,ws,...,wpr}. Let P(X) denote the power
set of X, and 5 € P(X) be a selected reference subset. Card(S) denotes the cardinality of
S. Let the error rate be e(S) when classifying X using S as a reference set, and t be the
tolerable error rate threshold. The problem can be formalized as follows:

Find S* such that Card(S*) = minCard(5), s.t. S € P(X),e(S) <t. (1)

In the following we will use Tabu search to solve this constrained optimization problem.

2.2 Tabu Search

Tabu search, proposed by Gloverl” | is a heuristic method that can be used to solve
combinatorial optimization problems. It has received widespread attention recently. Its
flexible control framework and several spectacular successes in solving NP-hard problems
led to the rapid growth of its application. It differs from the local search in the sense that
Tabu search allows moving to a new solution which makes the objective function worse in
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the hope that it will not be trapped in suboptimal solutions. Tabu search uses a short-term
memory, called tabu list, to record and guide the process of the search. In addition to the
tabu list, we can also use long-term memories and a prior: information about the solutions
to improve the intensification and diversification of the search.
Tabu search scheme can be outlined as follows: start with an initial {current) solution
z, called a configuration, evaluate the criterion function for that solution. Then, follow
a certain set of candidate moves, called the neighborhood N(z) of the current solution z.
If the best of these moves is not tabu, or if the best is tabu but satisfies the aspiration
criterion, then pick that move and consider it to be the new current solution. Repeat the
procedure for a certain number of iterations. On termination the best solution obtained so
far is the solution of the Tabu search. Note that the solution that is picked at a certain
iteration is put in the tabu list (TL) so that it is not allowed to be reversed in the next [
iterations. [ is the size of TL. When the length of tabu list reaches that size, then the first
solution on T is freed from being tabu and the new solution enters that list. T'L acts as a
short-term memory. By recording the history of the searches, Tabu search can control the
direction of the following searches. The aspiration criterion could reflect the value of the
objective function, i.e., if the tabu solution results in a value of the objective function that
is better than the best known so far, then the aspiration is satisfied and the tabu restriction
is relieved.
The framework of a Tabu search algorithm can be summarized as follows:
(1) Generate an initial solution ipit. Set Teurr = Tbest = Tinit. Let k =1, TL = 0.
(2) Pick out a certain number of solutions from the neighborhood of Zcure to form a candidate
solution set N{Zcurr)-
(3) a) If N(zcurr) = 0, goto (2) to regenerate the candidate set. Otherwise, find out the best
solution y in N(Zcurr)-
b) If y € TL and y doesn’t satisfy the aspiration condition, let N{(Zcurr) = N(Zeurr) — {¥},
then goto a). Otherwise, let Zcurr = y. If ¥ is better than Zpest, let Zyest = Teurr-
¢) If termination condition is satisfied, stop and output the Tpes:, otherwise insert Tcurr to
the tail of TL. If TL reaches a predefined size, free the first one. Let k = k+ 1. Goto (2).

For more details on Tabu search, the reader is encouraged to refer to Gloverl®.

2.3 Application of Tabu Search to Optimal Selection of Reference Set

In this section, we present our Tabu search-based algorithm for reference set selection
problem.

The reference set is represented by a 0/1 bit string, the k-th bit denotes the presence
or absence of the k-th sample in the reference set. Let Scur, Spext and Shest be current,
next and the best reference sets respectively. TL is a first in first out tabu list. It has a
predefined length [.

The reference set selection algorithm based on Tabu search is as follows:

(1) Generate an initial solution Sigit, set Scurr = Sinit, Sbest = X (the original data set). Let
TL=90.

(2) Insert the new solution to the tail of the tabu list, 7L = TL U {Scur }-

(3) Modify the best solution. If e(Scurr) < t and Card(Scurr) < Card(Spest), or Card(Scurr) =
CaTd(Sbest) and C(Scurr) < e(Sbest)7 then let Sbesb = Scurr-

(4) Search the optimal solution in the neighborhood of Scyrr. There are two cases:

If e(Scurr) < t, Le., the Scur satisfies the error rate threshold, search the optimal solution
Shnexs among all the sets that simultaneously satisfy the following conditions: 1) Snext C Securr, 2)
Card(Snext) = Card(Scurr) — 1, and 3) Snexe € TL. That is all the non-tabu sets generated by
removing a sample from Scurr respectively.

If e(Scurs) > ¢, ie., the Scur exceeds the error rate threshold, search the optimal solution
Spext among all the sets that simultaneously satisfy the following conditions: 1) Scurr C Snext, 2)
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Card(Snext) = Card(Scurr) + 1, and 3) Spexe ¢ TL. That is all the non-tabu sets generated by
adding a sample to Scurr respectively.

The criteria of optimality in adding or removing a sample will be explained in detail afterwards.

(5) Let Scurr = Snext, goto (2).

The termination condition is a predefined number of iteration rounds or/and that there
is no improvement of the solutions in some successive rounds.

In adding or deleting a sample, the following three properties of the condensed reference
subset are considered:

1) The change of the classification error rate before and after adding or deleting a sample.

2) The change of the classification of the samples which are wrongly classified before
adding a sample into the condensed reference subset.

3) The distance between the original data set and the resulted reference subset from or
into which a sample is deleted or added. The distance between the resulted reference subset
and the original data set is defined as the sum of the distances between each sample in
the original data set and its nearest sample of the same class in the reference subset. The
intention of doing so is to select the representative samples which are near to the cluster
center of the samples.

In searching the optimal Spex among all the candidate sets generated by adding a sample
to Scurr; We use the following two criteria.

Criterion 1. Search the S, of the minimal error rate in the candidate sets. If
e(Snext) < €(Securr), then Spexe is the optimal solution in the candidate sets. If there are two
or more solutions having the minimal error rate, then select the one that has the minimal
distance from the original data set. The distance is defined as above.

Criterion 2. For the minimal error rate Sp.. in the candidate sets, if e(Spext) >
e{Scurr), then consider selecting such samples which could correctly classify at least one of
the samples that are wrongly classified by Sc,... Among such candidate samples, select the
sample with minimal error or minimal distance. If all the candidate samples are in TL, then
aspirate the best (minimal error) one among them. The purpose of Criterion 2 is preventing
adding many redundant samples. If only based on Criterion 1, many redundant samples may
be added. Though they do not deteriorate the classification, but have no help. Adopting
aspiration operation is to avoid the meaningless exchange of samples between the feasible
and infeasible areas of the solution space. We will explain this in more detail in Section 4.

The case of deleting a sample from Sy, is relatively easy. We may use a criterion similar
to the above Criterion 1 to select the sample to be deleted based on the minimal error rate
and minimal distance between the two sets.

The initial reference set of Tabu search may be null set, randomly generated set, or the
result of other algorithm. It is not recommended to use the full original data set, that will
take more time to converge.

3 Test Data Set

Seven data sets were used to test the new TS-based methodology. These data sets have
broad scope in property as shown in Table 1. We have carried out two types of experiments
on these data sets. In the first type of experiments, we set the error rate threshold equal
to zero. Thus the resulted reference sets are the consistent subsets of the original data sets.
The second type of experiments uses a small nonzero error rate threshold, and independent
training and test data sets. The sizes of the obtained reference sets and error rates for
independent test data sets are used to compare the proposed algorithm with the CNN
and Dasarathy’s algorithms. (In the following we will call Dasarathy’s algorithm as MCS
algorithm also. The meaning of MCS can be found from the context.)



130 ZHANG Hongbin, SUN Guangyu Vol.16

Table 1. Data Set

Data Dimension | Classes | Number of Samples (Training/Test) | Parameters

IRIS 4 3 150 —

I 6 2 300,/3000 =61 =256
RING 2 2 180/3000 T =1,75 = 2,73 =3
DIAGONAL 2 2 100/2000 n=2u=35
INTERVAL 5 2 300/3000 n=>5

NESS 10 2 300/3000 n=10,4=20
VMD 10 2 200/2000 n =10, = 3.0

The seven data sets are as follows.

(1) The Iris data set (IRIS)

The Fisher’s Iris data set contains 150 4-dimensional feature vectors from three classes:
Setosa, Virginica, and Versicolor. Each class contains 50 samples.

(2) The I-I data set (I-I)

The I-I data set was used by Fukunaga and Hamamoto in [10, 11]. The samples were
independently generated from two classes of n-dimensional normal distributions N(u;, Z;),
1 =1,2. The parameters are:

pr=100,...,0]", pp = [1,0,...,0]T, 8y = By = .

Here u; is the n-dimensional zero vector and [, is the n x n identity matrix. The value
1 controls the overlap between the two distributions. We used g = 2.56 in the experiments,
which led to a Bayes error rate of 10%. When the dimensionality of the data changes, the
Bayes error rate remains unchanged for a fixed p.

(3) The ring-shaped data set (RING)

This is a two-class problem defined in 2-dimensional plane. The
classes are circumscribed by three circles of radii ry, r2 and r3 respec-
tively (Fig.1). One class is represented by the gray areas, and the
other class by white ring. Samples are uniformly distributed over the
corresponding areas.

Fig.1. Ring data set. (4) The diagonal data set (DIAGONAL)

It is a two-class, 2-dimensional data set. Each class consists of two normal distributions

as follows:

1 1
pi(z) = §N(N117 I,)+ §N(#12,In),

1 1
p2(2) = 5N (par, In) + 5N (p22, ),

where py; = [0,0]T, pio = [, 1]T, p21 = [1,0]T, g2z = [0, 4]T. The Bayes error rate of this
data set is determined by p. We used u = 3.5 in the experiments.

(5) The interval data set (INTERVAL)

It is a two-class data set taken from [10]. Each class consists of two normal distributions

as follows:
1 1
Pl(f‘?) = §N(I~L11,In) + §N(/J'12aln);
1 1
p2(z) = EN(Nmfn) + 'Z_N(/U'Z%In)v
where p11 = [0,0,...,0]7, uy2 = [6.58,0,...,0]T, 2y = [3.29,0,...,0]T, por = [9.87,0,...,0]F

Even when the dimensionality of the data changes, the Bayes error rate of this data set re-

mains at 7.5%.
(6) The Ness data set {(NESS)
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This data set was used in [12] by Ness. The samples were independently generated from
two n-dimensional normal distributions N{z;, 2;) with the following parameters:

p =10,...,0)T, ua =[4/2,0,...,0,4/2]F,

In/Z 0
El = IH,EQ = 1
0 §In/2

where A is the Mahalanobis distance between class wy and class ws. The Bayes error rate
varies depending on the value of A as well as n.

(7) The VMD data set (VMD)

This data set was independently generated from two n-dimensional normal distributions
N(p;, i), © = 1,2. The mean vector of the second class is decreased by degrees:

T
1“‘1:[0:"’70]’1-\7.“2: [”7%7%7"'7%] :EIZEZZIW,-

Table 1 summarizes the seven data sets including the dimension, number of classes,
number of samples, and the values of parameters. In the training set of RING, the numbers
of samples of two classes are 120 and 60 respectively, and 2000,1000 in the test set. In other
data sets, the numbers of training samples and test samples are equal.

4 Experimental Results and Analyses

4.1 The Optimal Consistent Set Obtained by Tabu Search

Setting the error rate threshold to zero, Tabu search can select the optimal (minimal)
consistent sets. The results corresponding to these seven data sets are shown in Table 2.
The Euclidean distance is used in these experiments. The classifications are made by 1-NN.
For comparison, we implemented the CNN and MCS algorithms and the results are also
shown in Table 2. For CNN method, we show the best and the average results in 10 runs.
The initial solutions of Tabu search were null set or randomly generated. For randomly
generated initial solutions, 10 runs were executed on each data set. Table 2 lists the best,
the worst, and the average results, along with the standard deviations. For null set initial
solution, Tabu search only runs once, as the solution is unique according to our T'S-based
algorithm. In experiments, the lengths of the TL are set to equal the number N of samples
in the training sets respectively. The termination condition is 2/V times of iterations or that
during N times of iterations. There is no. improvement of the solutions.

Table 2. Consistent Set Obtained by CNN, MCS and Tabu Search

Original CNN TS (null TS (random m samples
Data Set San%ples Best | Average MCS initia(l set) | m | Best ( Worst Averfge %ts.d.)
IRIS 150 18 19.8 15 15 15 11 15 14.0(£0.8)
LI 300 90 97.4 74 62 30 [ 55 71 63.1(£5.0)
RING 180 44 51.0 43 28 18| 26 35 30.7(£3.1)
DIAGONAL 100 12 16.2 13 6 10 6 10 7.5(+1.3)
INTERVAL 300 98 104.1 89 58 30 57 72 68.8(+4.4)
NESS 300 67 72.6 16 29 30 | 26 39 33.9(£3.9)
VMD 200 29 34.4 23 4 20 4 13 7.7(£2.6) |

From Table 2, we see that the derived consistent sets by CNN have more samples than
those by MCS and TS. As previously mentioned, CNN is also sensitive to the order of
samples. Meanwhile MCS method resulted in smaller consistent sets than CNN (except
DIAGONAL data set). But the resulted consistent sets of MCS are not minimal. The
TS method obtained even smaller sets than those of MCS for all of the seven data sets.
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Though to some extent TS is sensitive to the initial solutions, but even in the worst case,
the consistent set is still smaller than that of MCS (for IRIS, it is the same).

Based on the above experimental results, we analyze the MCS method and the aspiration
criterion of Tabu search further.

1) In [7] Dasarathy claimed that though no formal mathematical proof was established,
but he tended to consider the MCS to be the optimal, i.e., the MCS could attain the
true minimality of the consistent subset size. Kuncheva also quoted this minimality in [8].
However, the above experiments show that the consistent subsets obtained by MCS are not
minimal. For example, for IRIS data set the MCS obtained definitely consistent subset
containing 15 samples (see [7] and our Table 2), but our TS-based method obtained a subset
containing only 11 samples.

2) In MCS method, Dasarathy maintained a candidate consistent set consisting of all
samples either (a) which were already present in the current consistent set, or (b) whose
inclusion would not create inconsistency. He asserted that the samples in the consistent
set are monotonically reducing. In our experiments we found that Dasarathy’s effort is
not always effective, and the number of samples in the consistent set increases sometimes.
Since after recounting the NUN (Nearest Unlike Nerghbor) distances of each instance and
revoting, the order of the most voted sample may change. This will cause the consistent set
not to reduce monotonically. In the following we give an example to illustrate this situation.

Y o
l KFirsL class Coordinates

S | o Second classl Sample point | Class T Y
e

i 0 [ _]00]o00

ol aihy dy N a) 1 1.0 | 0.0

— A 0060 —hh— &k ——hh—B5—4— T bl 1 l'] 00
| cy €)1

It c1 2 1.9 | 0.0

® dy 2 2.4 0.0

31 2 2.7 0.0

N 1 3.2 | 0.0

Fig.2. A counter example to monotonically reducing.

Fig.2 is a data set of two classes. The samples are located on the ¢ and y axes. The
coordinate values of the samples on the positive z-axis are shown in the table of Fig.2. The
other samples are rotated images of the samples on the positive z-axis. For convenience,
group the points that are symmetrical about the origin to form a set, and call them as
0,A,B,C,D,E, F respectively. According to Dasarathy’s algorithm, in the first iteration
each point in the set O, A ~ F' has an NUN distance and gets a vote as follows (identical
for the samples in the same set).

Point (0] ay b1 c dy ey fi
The Vote 1 3 3 2 3 2 1
NUN Distance | 1.9 { 0.9 | 06 | 0.6 | 0.8 | 0.5 | 0.5

So the algorithm obtains AU D U F as the candidate consistent set, and its size is 12.
The second iteration recounts the NUN distances and revotes. At this time each point in A
votes O, so the vote of O is 5. The votes and NUN distances of each point are as follows:

Point o] ay b c1 dy e f1
The Vote 5 3 3 2 3 3 1
NUN Distance | 24 | 1.4 [ 1.1 { 09 | 08 | 0.5 | 0.8

Then the candidate consistent set becomes O U A U D U F. According to Dasarathy’s
algorithm, the most voted sample O in this candidate consistent list should be designated as
a member of a newly selected consistent set, and this will not create any new inconsistencies.
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So the second iteration gives a consistent set of O U AU D U F. Its size is 13, larger than
the previous size. This conflicts with the claim of [7].

Since the above reason, the sizes of the MCS listed in Table 2 are not the final results,
they are the minimum ever obtained in iterations. We found that in most cases the MCS is
monotonically reducing, but there are exceptions sometimes.

3) In solving constrained optimization, the search process often wanders between the
feasible and infeasible regions in the solution space. This decreases the efficiency of search
algorithm. As described in Subsection 2.3, we use an aspiration criterion to avoid the
meaningless exchange of samples between the candidate consistent set and the rest samples.
Here we give an example to illustrate the advantage of introducing this aspiration criterion.

Suppose a is such a sample that it won’t be correctly classified unless it by itself is in the
reference set. B = {b1,bq,...,bx} is a cluster of samples of a class. Provided anyone of B is
in the reference set, it can classify all samples of B. Suppose Tabu search obtains a reference
set S, which satisfies the error rate threshold, and a,b; € S. The next step of TS will try to
remove a sample from S. After calculation removing a will lead to the minimal error rate.
So TS obtains the subset S — {a} (signs ‘~’ and ‘+’ denote deleting or adding a sample).
Suppose the classification error rate of this set becomes larger than the threshold, then TS
will add a sample to the reference set. If there is not aspiration criterion, TS will add a
redundant sample by as S is tabu (a,b; € S is in the tabu list). After this the error rate
still doesn’t satisfy the threshold, it is needed to add sample further, then a is added, and
a subset S 4 {by} is obtained. It satisfies the threshold. Afterwards, TS algorithm deletes
by, obtains S + {by} — {b1} (it is not tabu). So the search process would be

S—8—{a} =S —{a}+{b2} = S+ {b2} = S+ {b2} — {by}---

These search steps only replace b; with bs, and such meaningless replacements will con-
tinue. Since S + {ba} — {b;} satisfies the threshold, the next step will remove a, and the
process may be as follows:

S S+{b}—{bi} = > S+ {bs}—{b1} = = S+ {br} — {b}--

Obviously, these processes would decrease the efficiency of the algorithm, especially when
the tabu list is short, the algorithm would be trapped into meaningless exchanges of samples
between feasible and infeasible solution regions.

In these cases, we hope that the search process will add a again and try to remove another
sample after removing a fails. Through introducing the aspiration criterion described in
Subsection 2.3, we can achieve the desired search process. For example, when TS obtains
S —{a}, as adding any b; € B (i = 1,...,k) cannot improve the error rate and correctly
classify any wrongly classified sample by S — {a}, the algorithm will aspirate S not to be
tabu, then it will start a new search path. Since at this time S — {a} becomes tabu, the
algorithm will try to remove some other sample from S, and avoid the inefficient exchanges
of samples.

4.2 Classification Performance of the Reduced Reference Set

In the above section, we set the error rate threshold to be zero and obtained the consistent
set of the original data set. However in practice due to the finite sample size the performance
of the consistent set may not necessarily be the best in the operational phase of classifying
an independent test data set. Fukunaga and Hummels show that the 1-NN estimates may
be severely biased even for the large sample size if the dimensionality of the data is large!*®!.
They recommend a decision threshold ¢ to take into account the bias in density estimation(*4).
That is, the decision rule can be modified as: classify = into class wy, if

plzlwr) > plelw;) +t, forallj=1,...,m, j#k
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where p(z|e) denotes the estimated density. But the optimal selection of the decision thresh-
old t is difficult because of its complexity. In this section we set the error rate threshold
to be a small nonzero value, and investigate the reference sample reduction rate and the
classification performance of the condensed reference subset.

In the following experiments, the error rate thresholds were set to ¢ = 0.00, 0.05 and
0.10 respectively. The training data sets and test data sets are independent. For different
thresholds and data sets, repeat TS five times, one of them uses null set as initial set,
the other four times use randomly selected samples as initial sets. Use the reference sets
resulted from the training sets, classify the samples of the test data sets respectively, and
the experimental results are summarized in Table 3. For comparison, we also conducted the
1-NN classification on all data sets, and the CNN, MCS methods which used independent
training and test data sets. These experimental results are also listed in Table 3. The IRIS1
and TRIS2 are two random partitions of the IRIS data set. Their numbers of training/test
samples are 30/120 and 75/75 respectively.

Table 3. Classification Performance of the Condensed Sets

Data Sets DIA- INTER- .
Algorithms IRIS1|IRIS2{ I |RING GONAL VAL NESS | VMD
Original Training Set Size 30 75 300 180 100 300 300 200
1-NN Error rate (%) 417 | 400 | 17.73] 9.44]| 875 | 13.07 | 9.10 6.75
CNN Cond. subset size (average)| 7.1 |12.4 | 974 | 51.0 | 16.2 104.1 72.6 | 34.4
Error rate (average) (%) | 5.12 | 8.43 | 20.54| 12.17] 11.94 16.71 14.24] 10.48
MCS Cond. subset size 6 9 74 43 13 89 46 23

Error rate (%) 6.67 {12.00 | 21.27] 11.73} 10.60 18.73 15.50| 9.45

Cond. subset size (average)| 4.0 8.2 63.0 | 304 7.4 67.8 33.4 7.3
Tabu Error rate Best 3.33 | 6.67 § 19.23] 10.17| 12.90 15.57 12.10{ 4.90
(t =0.0) Worst 5.00 [12.00 | 21.03] 12.93} 6.55 18.30 14.97| 7.55
(%) Average 3.67 | 8.27 | 20.23| 11.19( 10.28 17.04 13.80] 6.36

Cond. subset size (average)| 4.0 | 3.0 114 | 136 4.0 12.2 2.0 2.0
Tabu Best 3.33 | 4.00 | 12.47} 10.07| 6.50 9.73 7.70| 5.45
Error rate P T

(t = 0.05) Worst 5.00 | 4.00 | 16.60| 14.20{ 8.70 13.60 7.70| 5.45
(%) Average 4.00 | 4.00 | 14.63| 12.75| 7.55 11.23 7.701 5.45

Cond. subset size (average)| 3.0 | 3.0 2.6 9.8 4.0 4.0 2.0 2.0
Tabu Error rate Best 10.00 | 4.00 | 11.33| 13.40{ 5.50 9.33 7.70| 5.45

(¢ =0.10) Worst 12.50 { 4.00 | 12.67] 19.97| 7.50 12.40 7.701 5.45
(%) Average 11.33 | 4.00 | 11.95] 16.36] 6.57 10.54 7.701 5.45

From Table 3 we see that when ¢t = 0.00, the sizes of the condensed consistent sets are
smaller than those of CNN and MCS. Wlien ¢ = 0.05, the sizes of the condensed sets are
much smaller than those of ¢ = 0.00, and the condensed subsets for NESS and VMD are
rather rational, their classification performances approach the Bayes errors. When ¢ = 0.10,
the DIAGONAL, I-I and INTERVAL obtain quite rational reference sets, their sizes and
classification performances are superior to those of t = 0.00.

From the experimental results we also observe that for different data sets the appropriate
threshold t is also different. It depends on the data distribution. For example, the RING
data set needs more samples as reference prototypes. Therefore as ¢ increasing, the number
of reference samples becomes smaller, and this may incur the increase of the error rate. For
IRIS1 data set, the classification performance at ¢ = 0.10 is also deteriorated. Through
experiments, we observe that for the data sets used above the appropriate thresholds are as
follows:

Data Set

IRIS I-]

RING

DIAGONAL

INTERVAL

NESS

VMD

Threshold

0.05 | 0.10

0.00

0.10

0.10

0.05

0.05

In experiments, it was also shown that the sample distributions of the condensed reference
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subsets by Tabu search are quite rational. Fig.3 shows the sample point distributions of the
original DIAGONAL data set and the condensed reference subsets by CNN, MCS and TS
(t = 0.00, 0.05 and 0.10) respectively.
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Fig.3. Distribution of DIAGONAL and its condensed subsets. (a) Diagnal data set. (b) Result of CNN. (<)
Result of MCS. (d) Result of TS (¢t = 0.0). (e) Result of TS (¢t = 0.05). (f) Result of TS (¢t = 0.01).

5 Conclusion

We have used TS to select the optimal reference subset for the nearest neighbor clas-
sification. The performance of the proposed algorithm was demonstrated for several data
sets. It is shown that the proposed algorithm outperforms the CNN and MCS in the refer-
ence sample reduction rate and classification performance. We have also demonstrated that
the minimal consistent set of Dasarathy’s algorithm is generally not truly minimal, and his
claim of monotonically reducing of the consistent set size is not always true. We fee!l that
the TS-based condensing method significantly reduces the size of the reference set without
losing the classification accuracy. Therefore the TS-based method should be considered as
a promising tool in the NN classifier design.

References

{1] Dasarathy B V. Nearest Neighbor (NN) Norms: NN Pattern Classification Techniques. Los Alamitos,
CA: IEEE Computer Society Press, 1991.

[2] Hart P E. The condensed nearest neighbor rule. IEEE Trans. Information Theory, May 1968, IT-14(3):
515-5186.

[3] Gates G W. The reduced nearest neighbor rule. IEEE Trans. Information Theory, May 1972, IT-18(3):
431-433.

{4] Swonger C W. Sample set condensation for a condensed nearest neighbor decision rule for pattern
recognition. In Frontiers of Pattern Recognition, Watanabe S (ed.}, New York: Academic Press, 1972,
pp-511-519.

[5] Chang C L. Finding prototypes for nearest neighbor classifiers. [EEE Trans. Computers, Nov. 1974,
C-23(11): 1179-1184.

[6] Devijver P A, Kittler J. On the edited nearest neighbor rule. In Proc. 5th Int. Conf. Pattern Recogni-
tion, Miami, Florida, 1980, pp.72-80.



136 ZHANG Hongbin, SUN Guangyu Vol.16

{7] Dasarathy B V. Minimal consistent set (MCS) identification for optimal nearest neighbor decision sys-
tems design. IEEE Trans. Syst. Man Cybern., March 1994, 24(3): 511-517.
[8] Kuncheva L I, Fitness functions in editing k-NN reference set by genetic algorithms. Pattern Recognition,
1997, 30(6): 1041-1049.
[9] Glover F, Laguna M. Tabu Search, in Modern Heuristic Techniques for Combinatorial Problems. Reeves
R C (ed.), Berkshire: McGraw-Hill, 1995, pp.70-150.
{10] Fukunaga K. Introduction to Statistical Pattern Recognition. Second Edition, New York: Academic
Press, 1990.
[11] Hamamoto Y, Uchimura S, Tomita S. A bootstrap technique for nearest neighbor classifier design. IEEE
Trans. Pattern Analysis and Machine Intelligence, Jan. 1997, 19(1): 73-79.
{12] Van Ness J. On the dominance of non-parametric Bayes rule discriminant algorithms in high dimensions.
Pattern Recognition, 1980, 12(3): 355-368.
(13] Fukunaga K, Hummels D M. Bias on nearest neighbor error estimates. IEEE Trans. Pattern Analysis
and Machine Intelligence, Jan. 1987, 9(1): 103-112.
[14] Fukunaga K, Hummels D M. Bayes error estimation using Parzen and k-NN procedures. [EEE Trans.
Pattern Analysis and Machine Intelligence, 1987, 9(5): 634-643.

ZHANG Hongbin received the B.S. degree in automation in 1968, and the M.S. degree in
pattern recognition and intelligent system in 1981, both from Tsinghua University, China. From
1986 to 1989 he was an invited researcher in Department of Information Science of Kyoto University,
Japan. From 1993 to 1994 he was a visiting scholar of Rensselaer Polytechnic Institute, USA. Since
1993, he has been a professor of Computer Institute, Beijing Polytechnic University, China. His
current research interests include pattern recognition, computer vision, neural networks and image
processing.

SUN Guangyu received the B.S. degree in geology from Peking University in 1992 and the
M.S. degree from Computer Institute, Beijing Polytechnic University in 1999. His current research
interests include pattern recognition and computer vision.



