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ABSTRACT: Catalyst controlled site-selective C−H functionali-
zation is a challenging but powerful tool in organic synthesis.
Polarity-matched and sterically controlled hydrogen atom transfer
(HAT) provides an excellent opportunity for site-selective
functionalization. As such, the dual Ni/photoredox system was
successfully employed to generate acyl radicals from aldehydes via
selective formyl C−H activation and subsequently cross-coupled to
generate ketones, a ubiquitous structural motif present in the vast majority of natural and bioactive molecules. However, only a
handful of examples that are constrained to the use of aryl halides are developed. Given the wide availability of amines, we developed
a cross-coupling reaction via C−N bond cleavage using the economic nickel and TBADT catalyst for the first time. A range of alkyl
and aryl aldehydes were cross-coupled with benzylic and allylic pyridinium salts to afford ketones with a broad spectrum of
functional group tolerance. High regioselectivity toward formyl C−H bonds even in the presence of α-methylene carbonyl or α-
amino/oxy methylene was obtained.

The greatest strength of C−H functionalization is the
evasiveness of prefunctionalization in organic synthesis,

although the vast majority of C−H activation relies on the use
of directing groups or intramolecular hydrogen atom
abstraction.1−6 In recent years, there has been an increasing
interest in catalyst controlled hydrogen atom transfer (HAT)
process since the transition state favors the polarity-matched
and sterically controlled hydrogen atom abstraction.7−15 The
site selectivity can be achieved by choice of suitable catalyst
and reaction conditions. Of the many HAT reactions known,
the generation of acyl radicals from aldehydes stands out to be
a unique strategy to offer ketones, a fundamental functional
group present in natural and bioactive molecules. Because alkyl
aldehydes are easily accessible and inexpensive, the direct
coupling of aldehydes via formyl hydrogen atom abstraction is
highly desirable. While transition-metal mediated direct cross-
coupling of aromatic and benzylic aldehydes with aryl halides
exist, in general, these reactions rely on the stoichiometric use
of oxidants or reductants and high temperature (Scheme
1a).16−22

As such, developing strategies to generate acyl radicals from
aldehydes under the mild reaction condition is highly desirable.
In this context, Macmillan13 recently developed a dual Ni/Ir
photoredox catalysis that enabled the cross-coupling of alkyl
aldehydes via HAT process under mild conditions (Scheme
1b). Murakami and Ishida also developed a similar protocol for
dehydrogenative coupling of aldehydes.23 As an alternative, the
inexpensive TBADT (tetrabutylammonium decatungstate)
represents a unique and highly attractive photocatalyst in
HAT process since the triplet state wO of TBADT selectively
abstracts a hydrogen atom from a range of substrates.

Fagnoni24 and Orfanopoulos25 employed TBADT to generate
acyl radical from alkyl aldehydes, and subsequently employed
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Scheme 1. Cross-Coupling of Aldehydes
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them in Giese-addition. Lately, TBADT has also been
employed in dual Ni/Pd/photoredox catalysis to cross-couple
the aldehydes and aryl halides.26,27

Despite these initial findings, the scope of the electrophile
remains rather confined to aryl halides (Scheme 1b).26−28 As
such, developing strategies to accommodate more electrophiles
would be beneficial. The use of alkyl amines as an electrophilic
coupling partner in dual TM-photoredox catalysis is under-
developed despite its widespread availability.29,30 On the basis
of recent studies on Katritzky pyridinium salts31 by various
research groups including Watson,32−38 Glorius,39−41 Aggar-
wal,42,43 Martin,44 Rueping,45 and our group,46 we anticipated
that the pyridinium salts could be cross-coupled with alkyl
aldehydes under a suitable TM-photoredox catalytic system.
However, the undesired homocoupling of pyridinium salts and
site selectivity in C−H abstraction must be addressed (Scheme
1d). As a part of our ongoing studies in nickel mediated cross-
coupling reactions,46−48 herein we describe the Ni/TBADT
dual catalysis for the successful realization of coupling between
alkyl aldehydes and benzylic pyridinium salts.
At the outset of our studies, aldehyde 1a was chosen to

identify a suitable reaction condition. An extensive library of
nickel catalysts, ligands, photocatalysts, and solvents was
screened (see SI-4) to suppress the formation of undesired
homocoupled product 4. Of the several nickel catalysts
screened (entries 1−7, Table 1), only NiCl2·glyme and
NiBr2·glyme (entries 1−2) afforded the cross-coupled product
3a in very good yields. NiCl2 and NiBr2·bpy afforded the
ketone 3a only in 37% and 20% yields (entries 3−4), and the
undesired homocoupling of 2a to 4 was seen as a major
byproduct. The other nickel catalysts were also ineffective
(entries 5−7). Having identified NiCl2·glyme as the optimal
catalyst, a small group of ligands were further screened (entries
8−11). Interestingly, the reaction afforded 60% of 3a in the
absence of added ligand dtbpy (entry 8). However, the simple
bpy (entry 9), 1,10-phen (entry 10), and DMAP (entry 11)
ligands led to a significant reduction in the yields affording 3a
only in 53%, 38%, and 75% yields. When K2CO3 or Li2CO3
was employed as a base, the yield of 3a was drastically reduced
(entries 12−13). Lowering the amount of either K3PO4 (entry
14) or catalyst (entry 15−16) also lowered the yield. The high
dielectric constant solvent CH3CN was more efficient than the
other solvents (SI-5). Several photocatalysts were subsequently
investigated. Despite the fact that the absorption spectrum of
TBADT is centered at 324 nm,49 the broad range of its
absorption allows the use of visible light for the excitation. We
obtained excellent yields with both 390 and 365 nm LED lights
(entries 1 and 22), although the use of long-wavelength 410
nm LED light significantly reduced the efficiency of the
reaction (entry 21). Virtually no cross-coupled product was
seen when TBADT was replaced with Eosin Y or Mes-Acr-
ClO4 (entries 17−18). The more efficient Ir[dF(CF3)-
ppy2(dtbpy)]PF6 (E1/2 = 1.21 V vs SCE in CH3CN)

50

afforded the ketone 3a only in 58% yield (entry 19), and the
organic photocatalyst benzophenone gave traces of cross-
coupled product (entry 20). The amount of aldehyde 1a
cannot be lowered as it significantly reduces the yield of 3a
(entry 23). In general, the dimerization of 2a accounts for all
the inefficient reactions. Control experiments revealed that
there was no reaction in the absence of K3PO4 or NiCl2·dtbpy
or TBADT or LED (entries 24−27).
Having the optimized conditions in hand, we screened a

broad spectrum of aldehydes, and the results are summarized

in Table 2. The linear alkyl aldehydes 1a−1i, including long
alkyl chain 1fa−1fg and benzylic aldehyde 1d, underwent
cross-coupling reactions with high levels of efficiency to afford
the corresponding ketones 3. The α-branched secondary alkyl
aldehydes 1j−1l including cyclohexanecarbaldehyde 1k and 4-
piperidinecarbaldehyde 1r did not impede the reaction; the
corresponding cross-coupled products were isolated in 85%,
79%, 72%, and 54% yields, respectively. As expected, aryl
aldehydes (1m−1q and 1w−1ae) including 2-naphthaldehyde
1n were also compatible under the optimized reaction
condition. The milder reaction condition granted us to
incorporate various functional groups, including ethers, alkyl
amine 1r, esters 2s and 1ae, medicinally relevant fluorides (1u
and 1z), trifluoromethyl 1ab, chlorides (1v and 1ad), and
propargyl 3y are compatible under the optimized condition.
Similarly, protecting groups such as TBDMS 1w, MOM 1ac,
acetate 1ae, and benzyl 1t groups are also compatible and
afforded the corresponding cross-coupled product in good
yields. This provides us with an opportunity for the further

Table 1. Optimization Tablea

entry deviation from above 4b 3ab

1 none 3 95, 89c

2 10 mol % of NiBr2·glyme 9 88
3 10 mol % of NiCl2 20 37
4 10 mol % of NiBr2·bpy 23 20
5 10 mol % of Ni(cod)2 28 43
6 10 mol % of Ni(OTf)2 21 13d

7 10 mol % of Ni(OAc)2·4H2O 6 19d

8 without dtbpy 8 60
9 10 mol % of bpy 42 53
10 10 mol % of 1,10-phen 27 38
11 20 mol % of DMAP instead of dtbpy 2 75
12 1.8 equiv of K2CO3 instead of K3PO4 27 25e

13 1.8 equiv of Li2CO3 instead of K3PO4 21 37e

14 1.0 equiv K3PO4 2 78
15 2.5 mol % of TBADT 3 86f

16 2.5 mol % of TBADT 14 60g

17 5 mol % of Eosin Y 25 NDh

18 5 mol % of Mes-Acr-ClO4 5 NDh

19 2 mol % of Ir[dF(CF3)ppy2(dtbpy)]PF6 10 58h

20 30 mol % of Benzophenone 27 6e

21 410 nm with 2 equiv of 1a 12 67
22 365 nm with 2 equiv of 1a 2 96, 81c

23 2 equiv of 1a 10 87, 80c

24 without K3PO4 ND NDd

25 without NiCl2·dtbpy ND NDd

26 without TBADT 28 <5d

27 without light source ND NDd

a0.0075 mmol of TBADT, 0.015 mmol of NiCl2·glyme, 0.015 mmol
of dtbpy, 0.15 mmol of 2a, 0.45 mmol of 1a, 0.27 mmol of K3PO4,
CH3CN (0.1 M), 390 nm. bGC yield. cIsolated yield. dUnreacted 2a
was observed in TLC analysis. e365 nm instead of 390 nm LED light
source was used. f7.5 mol % of NiCl2·glyme, 7.5 mol % of dtbpy. g5.0
mol % of NiCl2·glyme, 5.0 mol % of dtbpy. h445 nm instead of 390
nm LED light source was used. DMAP: 4-(Dimethylamino)pyridine.
dtbpy: 4,4′-Di-tert-butyl-2,2′-dipyridyl. bpy: 2,2′-Bipyridine. 1,10-
Phen: 1,10-Phenanthroline. ND: not detected.
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functionalization of the cross-coupled products. Our protocol
has also been extended to pyridinium salts derived from allyl
amines, thus giving rise to synthetically useful ketones 3af−3ah
in 86%, 84%, and 75% isolated yields. The moderate yields
concerning few substrates can be attributed to the formation of
homocoupled product 4 from pyridinium salt 2, traces of
proto-deaminated seen during the synthesis of 3i, and proto-
dehalogenated products for substrates 1aa and 1ad. A further
attempt to improve the yield was not successful.
The aldehydes 1n and 1ab exhibited diminished reactivity,

and incomplete consumption of aldehydes were observed. The
cross-coupled products from tetrahydrofuran-2-carboxalde-
hyde 1ba and citronellal 1bb were inseparable from impurities
(see SI-32). Pyridium salt 2bc derived from secondary alkyl
amine was inefficient to cross-couple with aldehyde 1a, and a
further attempt to improve the yield was unsuccessful.
Pyridine-2-carbaldehyde 1ca was found to be completely
unreactive; coordination of pyridine’s nitrogen to the nickel
center might be deactivating the catalyst. In fact addition of
pyridine-2-carbaldehyde 1ca in the standard reaction greatly

suppressed the efficiency of the reaction (SI-41). The tertiary
alkyl pivalaldehyde 1da remained intact, most likely because of
its steric hindrance. Tribromoacetaldehyde 1db was found to
be incompatible; numerous byproducts including proto-
dehalogenation were observed. Pyridinium salts derived from
primary alkyl amines are poorly reacting (see SI-33). In order
to expand the synthetic application, we have carried a large
scale reaction with 1.2 mmol of 2fb and obtained 3j in 84%
isolated yield.
As mentioned earlier, the presence of multiple C−H bonds

with a small difference in BDEs could lead to the formation of
regioisomers. It has been shown that the polar nature of HAT
event can selectively abstract hydrogen atom from electron-
rich sp3 C−H bonds in the presence of weak methylene/
methyl/methine C−H bonds (polarity mismatch), and the
kinetic control does not necessarily reflect BDEs of C−H
bonds.13,51 As expected, substrates with an α-methylene
carbonyl group (see Table 2) were compatible and smoothly
reacted at formyl C−H bond to afford the cross-coupled
product 3. However, substrates having C−H bonds next to the
heteroatom are prone to undergo hydrogen atom abstraction
since the polar transition state of HAT can be stabilized by the
α-heteroatom. Although the N-Boc protected substrate 1r may
not undergo α C−H abstraction, it has been reported13 that
the high dielectric solvents such as CH3CN promote α-amino
C−H functionalization for the substrate 1r under the
photocatalytic condition. Fortunately, we observed selective
HAT at the formyl C−H bond for the aldehydes with α-amino
methylene 1r and α-oxy methylene groups (1ac and 1t).
As we expected the generation of radical intermediates from

both the aldehyde 1 and pyridinium salt 2a, we employed
TEMPO in the optimized reaction condition and observed
(GC-MS and NMR) the formation of TEMPO-adducts 5, 7,
and 8 from both acyl and alkyl radical intermediates as shown
in Scheme 2. Our attempt to isolate the TEMPO-adducts 5

and 7 was unsuccessful; however, the adduct 8 was successfully
isolated in 37% yield. As we anticipate the reduction of
pyridinium salt 2a by low valent nickel complex, 2a was treated
with Ni(cod)2 and observed the homocoupled product 4.
However, 2a was intact when treated with TBADT (SI-40).
On the basis of the available literature data and our

observations, a mechanistic hypothesis is shown in Figure 1.
Upon subjecting TBADT (I) to 390 nm, a LMCT (oxygen →
tungsten) populates a short-lived (lifetime: ca. 30 ps) S1
excited state TBADT* (II), which decays (ISC) to long-
lived triplet state wO (lifetime: 55 ± 20 ns) with 0.5−0.6
quantum yield.52 The triplet state wO (III) abstracts a
hydrogen atom from aldehyde to generate the corresponding
acyl radical (IV) and the intermediate [W10O32]

5− (V).
Recently Macmillan et al. described that the reduction
potential of [W10O32]

5− (V) is insufficient to reduce high

Table 2. Substrate Scopea

a0.035 mmol of TBADT, 0.07 mmol of NiCl2·glyme, 0.07 mmol of
dtbpy, 0.7 mmol of 2, 2.1 mmol/1.4 mmol of 1 (alkyl/aryl), 1.26
mmol of K3PO4, CH3CN (0.1 M), 390 nm. bReduced with NaBH4
and isolated as alcohol. c10 mol % of TBADT, 7.5 mol % of NiCl2·
glyme and dtbpy. dNMR yield.

Scheme 2. Radical Trap Experiments
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valent nickel to Ni(0),14 and it undergoes disproportionation
to deliver [W10O32]

4− (I) and [W10O32]
6− (VI).8,52 The high

valent [W10O32]
6− (VI) reduces the Ni(I) species to the low

valent Ni(0) intermediate (VII), which rapidly reduces the
pyridinium salt 2 to generate the intermediate complex VIII
where the alkyl radical expected to be bound in the solvent
cage. The Ni(I) intermediate complex VIII further reduces the
acyl radical IV to generate the intermediate Ni(III) complex
IX, which undergoes reductive elimination to deliver the
acylated product 3 and regenerates Ni(I) intermediate to
continue the catalytic cycle.
In summary, for the first time, we demonstrated a milder and

efficient method for the cross-coupling of alkyl and aryl
aldehydes with benzylic and allylic pyridinium salts via C−N
bond cleavage. This dual catalysis accommodates a broad
spectrum of functional groups, thus providing access to
synthetically versatile ketones. Site selectivity was achieved in
the presence of various C−H bonds with similar BDEs. α-
Amino and α-oxy methylene groups were intact. The
generation of acyl and benzyl radical in the mechanistic cycle
was confirmed via the TEMPO trap experiment. Further study
to expand the scope of dual catalysis is currently underway in
our laboratory.
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