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ABSTRACT: All-carbon quaternary stereocenters are versatile building blocks, and their asymmetric construction has attracted
much attention. Herein, we disclose an axial-to-central chirality transfer strategy for the synthesis of chiral quaternary
stereocenters via dearomatization of (S)-BINOLs. The reaction proceeded smoothly with a wide range of propargyl carbonates
to afford chiral spiro-compounds in high yields with excellent enantioselectivities. In addition, the strategy was extended to
kinetic resolution of rac-BINOLs albeit with moderate s value.

All-carbon quaternary stereocenters are widely dispersed
in natural products and pharmaceuticals.1 Correspond-

ingly, considerable progress has been made in developing
efficient catalytic systems for their asymmetric synthesis.2 The
challenges associated with enantioselective construction of
quaternary carbon stereocenters could be addressed by
several known synthetic strategies. First, C−C bond
formation reactions occur on a sp2-hybridized prochiral
carbon such as olefins, metal carbenoids, enolates and
enamines, etc. (Scheme 1, a−c). Second, desymmetrization
occurs on prochiral molecules with a prochiral quaternary
carbon or kinetic resolutions occur on racemic compounds
bearing quaternary stereocenters (Scheme 1, d and e).3−5

Nevertheless, few research studies have been reported to

generate all-carbon quaternary stereocenters via chirality
transfer strategy (Scheme 1, to be explored).6

Axially chiral compounds, especially atropisomeric biaryls,
have received increasing attention from chemists due to their
promising performance in asymmetric catalysis and drug
discovery.7 However, atropisomeric biaryls are less explored
as for their memory of chirality.8 Basically, two reasons
contribute to these constraints: (a) the multistep procedures
and high cost during the preparation of desired enantiopure
biaryls; (b) dearomatization of biaryls9 usually require harsh
conditions with the risk of racemization. Recently, an axial-to-
central chirality transfer strategy has been reported by
palladium catalyzed dynamic kinetic resolution of racemic
biaryls (Scheme 2, a).10 A central-to-helical-to-axial-to-central
chirality transfer of 2,2′-biphenol by a photoresponsive
catalyst was also reported by the Feringa group (Scheme 2,
b). Moreover, the chiral switch system was successfully
applied to creation of other stereogenic elements.11

Inspired by these precedents, we sought to explore a new
catalytic system to generate an all-carbon quaternary
stereocenter via dearomatization of biaryls. Taking the
efficiency of palladium-catalyzed asymmetric dearomatization
reactions, we envisioned that this goal might be achieved
through dearomatization of (S)- or (R)-BINOLs. We
hypothesized that propargyl carbonate is the suitable partner
because of its dual electrophilic property during the
palladium catalysis (Scheme 2, c).12 Herein, we present
palladium-catalyzed dearomatizations of enantiopure BINOLs
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Scheme 1. Synthetic Strategies to All-Carbon Quaternary
Stereocenters
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to form all-carbon quaternary stereocenters via axial-to-central
chirality transfer.
We initiated our optimization by examining the reaction

parameters involving solvents, catalyst ligands, and leaving
groups using (S)-BINOL and methyl prop-2-yn-1-yl carbo-
nate as model substrates. Screening of solvents and catalysts
disclosed that DCM was the best solvent in the presence of
Pd2(dba)3 (see SI for details). When (R)-BINAP (L1) was
used as a ligand, more than 20:1 ratio of 3a/4a was obtained
albeit with moderate yield of the reaction (Table 1, entry 1).
Upon switching the ligand to L2−L5, 3a was generated in
low yield with decreased ratio of 3a/4a (Table 1, entries 2−
5). Reaction conducted with Pd2(dba)3/L6 afforded 3a in an
improved yield while maintaining excellent 3a/4a ratio at
shorter reaction time (Table 1, entry 6). Ultimately, the
change in ligand such as L7 and L8 gave us both high yields
of 3a along with high ratio of 3a/4a (Table 1, entries 7 and
8). It is noteworthy that when the reaction was performed in
toluene with L1 as a ligand, diether product 4a was obtained
exclusively (Table 1, entry 9). This observation highlights the
importance of the reaction system affording the different
selectivity between 3a and 4a. Interestingly, 4a could undergo
palladium-catalyzed isomerization to deliver dearomatizative
product 3a (see SI for details). Finally, different leaving
groups were also examined but resulted in decreased yield of
3a (Table 1, entries 10 and 11).
With the optimized reaction conditions in hand, we then

explored the scope and limitations of the reaction (Schemes
3 and 4). Delightfully, the reaction tolerated broad
substituent groups on arylpropargyl carbonates regardless of
electron effect and steric hindrance of aryl group.13 For
example, 3b was obtained in excellent yield with >99% ee.14

Various substituted groups at the para-positions of arenes
were well tolerated to generate products 3 in good to
excellent yields (Schemes 3, 3c−3j). Moreover, a range of
meta- and ortho-substituted, electron-poor and electron-rich
analogues gave high yields of dearomative products (3k−3p).
The substrates bearing multifunctional groups at aryl group of

2 also underwent smoothly to generate the desired products
(3q−3u). Steric hindrance was then proved to be
uninfluential to this reaction since hindered arylpropargyl
carbonates delivered the corresponding products in excellent
yields (3v and 3w). Finally, we noticed that heterocycle was
compatible with the reaction system (3x). More importantly,
in all cases, the reaction of (S)-BINOL with arylpropargyl
carbonates delivered the desired products in high Z/E
selectivity of 3. Meanwhile, the products were obtained in
absolute configuration of S without erosion of ee value.
To showcase the generality of this method, alkylpropargyl

carbonates were synthesized and subjected to the reaction
system (Scheme 4).15 The nonfunctional linear alkylpropargyl
carbonates were compatible with the reaction, leading to the
products in good to excellent yields (6a and 6b). The alkyl
groups could be changed to branched or cyclic substituents
which gave moderate to good yields, albeit with decreased Z/
E ratio in some cases (6c−6h). A variety of functional
alkylpropargyl carbonates were tolerated, affording the desired
products with moderate to high Z/E ratios (6i−6m). Lastly,
selected natural available aldehydes were used to synthesize
the corresponding propargyl carbonates which could also be
treated as candidates for the reaction. The products were
obtained with moderate yields with high Z/E ratios (6n−6p).

Scheme 2. Axial-to-Central Chirality Transfer of Biaryls Table 1. Optimization of Reaction Conditionsa

entry ligand t (h)
leaving
group

yield
(3a, %)b

yield
(4a, %)b 3a/4ac

1 L1 1.0 OCOOMe 62 trace >20:1
2 L2 2.0 OCOOMe 38 47 45:56
3 L3 2.0 OCOOMe 46 24 66:34
4 L4 2.0 OCOOMe 39 26 60:40
5 L5 20 OCOOMe 37 43 46:54
6 L6 0.5 OCOOMe 77 trace 93:7
7 L7 0.5 OCOOMe 96 trace >20:1
8 L8 0.2 OCOOMe 99 trace >20:1
9d L1 1.0 OCOOMe trace 45 <1:20
10 L8 10 OBoc 52 trace >20:1
11 L8 8.0 OBz 37 trace >20:1

aReaction conditions: 1a (0.1 mmol), 2 (0.2 mmol), Pd2(dba)3 (5
mol %), ligand (10 mol %), DCM (1.0 mL), rt. bYield of isolated
products. 3a were obtained in >99% ee in all cases. cDetermined by
HPLC. dToluene as solvent.
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With respect to the BINOL derivatives, several disub-
stituted (S)-BINOLs were utilized in the reaction system. As
expected, the reaction proceeded smoothly to furnish the
desired products in excellent yields (Scheme 5, a). In
addition, linear propargyl carbonates were also tested and
found compatible to the reaction (Scheme 5, b). A late-stage
functionalization was also conducted, and excellent yield was
obtained without the erosion of diastereomeric ratio,
highlighting the strategy to modify glycoside derivatives
(Scheme 5, c).
In light of the axial-to-central chirality transfer reaction

system, we investigated the kinetic resolution of rac-BINOL
using 2a as the substrate. After evaluating a series of solvents
and ligands, s factor of 9.4 was obtained with 72% ee of (S)-
BINOL and 64% ee of (R)-3a (Scheme 6, see SI for details).
To further test the practicality of this method, a gram-scale

reaction of (S)-BINOL with 2a was carried out (Scheme 7).
To our delight, the loading of catalyst could be decreased to
1.0 mol % without the erosion of yield and enantioselectivity.
Then several transformations of 3a were carried out. For
example, a Pd/C-catalyzed hydrogenation of product 3a
afforded product 11 in excellent yield with high chemo-
selectivity. 3a was transformed into 12 in 94% yield under

acidic conditions. The absolute configuration was confirmed
by X-ray crystallographic analysis.16

Presumably, two competing reactions occur under the
reaction conditions (Scheme 8). First, propargyl carbonates
are activated by Pd and converted to highly reactive
intermediate I with a release of CO2.

12e Next, the BINOL
hydroxy group attacks intermediate I to form π-allylpalladium
intermediate II. Intermediate III is formed after the
generation of MeOH from intermediate II. On the one
hand, intermediate III would undergo dearomatization to
deliver product 3a directly. On the other hand, the anionic
oxygen would attack the π-allylpalladium to afford product 4a
first, and then product 4a undergoes palladium-catalyzed
isomerization to dearomatizative product 3a (see SI for
details).
In summary, we have described herein a novel strategy to

construct all-carbon quaternary stereocenter scaffolds by axial-
to-central chirality transfer. This new highly chemo- and
stereoselective approach allows for the rapid construction of a
new class of spirocyclic molecules bearing an all-carbon
quaternary stereogenic center with high enantioselectivities
(>99% ee). Moreover, limited attempts were conducted to
realize the kinetic resolution of rac-BINOL with s factor of

Scheme 3. Substrate Scope of Arylpropargyl Carbonatesa

aReaction conditions: 1a (0.1 mmol), 2 (0.2 mmol), Pd2(dba)3 (5 mol %), ligand (10 mol %), DCE (1.0 mL), 50 °C, 2 h. Yield of isolated
product. % ee was determined by chiral HPLC. Z/E ratio was determined by 1H NMR.
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9.4. The synthetic potential of the resulting products was
demonstrated with several transformations and late-stage
functionalization.
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