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alcohols and benzyl halidesto acidsin neat conditions

Masoumeh Jadidi Nejad1 . Arefe Salamatmanesh® . Akbar Heydaril*

! Chemistry Department, Tarbiat Modares Universitf)./Box 14155-4838, Tehran, Iran.
"E-mail: heydar_a@modares.ac.ir; Fax: +98-21-82883%6l: +98-21-82883444

Abstract

Copper (II) immobilized on L-arginin@-cyclodextrin-functionalized magnetite nanopartcle
(nano-FeO,@L-arginine-CD-Cu(ll))was successfully synthesized and fully charactdrireng
FT-IR, XRD, SEM, EDX, ICP, TGA and VSM techniqueEhe catalytic activity of these
magnetically retrievable nanoparticles was evalliatethe direct oxidation of primary alcohols
and benzyl halides to acids in neat conditions e observed to proceed well and products
were obtained in good yields. In addition to shayigood catalytic activity, the magnetic

catalyst is easy to synthesize and can be recgtlest five times with little loss in activity.

K eywor ds Copper (1) complexp-cyclodextrin; L-arginine; Magnetite nanoparticl@enzylic oxidation;
Acids

1 Introduction

Oxidation is a fundamental research field in bathokratorial and industrial levels to synthesize
various useful produc{4,2]. Carboxylic acids are important structuraltifsofound in a wide
range of natural products [3], pharmaceuticals tamel chemicald4,5], they are also used as
significant organic synthetic precursors to prepesters, amides and polymers [6]. Therefore,
direct oxidation of benzyl chlorides, benzyl broesdand especially alcohols to carboxylic acids
is one of the most important reactions in organjotlsesis[7—9]. Traditionally, acids are
produced from primary alcohols by the use of toaid hazardous strong oxidants such as
manganese(VIl) [10,11], chromium(MD2,13], hypervalent iodine [14,15] and activateil $O
[16,17], resulting in copious waste from at ledagichiometric amounts of these oxidants. Thus,
it is important to develop environmentally friendhgw oxidization protocols. During the last
decades, most of the reported catalytic systemthésynthesis of carboxylic acid from alcohol
under mild conditions are based on noble metalé siscpalladium, gold, ruthenium, iridium,



and platinum, however the limited accessibility dngh price of these noble metals constrict
their application in largescale industrial prodanf{il8—21].

Non-metal catalytic systems for this oxidation g@@mmation have also been attracted much
attention and some previous studies employed DRE],thiourea, [23] and quinine-derived urea
[24] as organocatalyst for the oxidation of alcohols.tHhe search of new aerobic oxidation
procedures for alcohols, promising results havenbaatained by using of catalytic systems
including nitroxyl radicals, such as (2,2,6,6-tetshylpiperidin-1-yl)oxyl (TEMPO) and first-
row transition metals, such as Cu, Fe and Mn [2h-B2atalysts that contain earth-abundant
elements such as Co, [33] Fe, [34] Mn, [35] Cu,][&6c. are both economically and
environmentally attractive, however their effici@gare generally low when compared with the
noble metal catalysts [37] and, in most cases,rgelamount of various base additives or
hazardous oxidizing agents (e.g., peroxy acids,maethl oxidants) are also required to promote
the activity and selectivity [38].

In recent years, many catalytic systems involvirapgition metal complexes with hydrogen
peroxide as mild and cheap green oxidant have be®stigated for the oxidation of alcohols
[39-42]. In some researches, various alcohols wemasformed into the corresponding
carboxylic acids and ketones in good yields viBuOOH (TBHP) in the presence of Bk as
catalyst [43]. Also, in 2013 for the first time,ethuse of tetra-butylammonium bromide
(TBAB) as an organocatalyst with TBHP for this strmation was reported [44]. Moreover, a
variety of transition metal catalysts such as Fe, Ru, Pd, V, Mn, Cu, etc. with TBHP as an
oxidizing agent have been utilized for oxidatioaaggons of alcohols [45-52]. Among various
catalytically active transition metal complexespper complexes bearing phosphines or nitrogen
ligands have found numerous applications in orgarsinsformations; however, there are still
ongoing efforts to prepare stable copper complef&Syclodextrin $-CD) is a water-soluble
cyclic oligosaccharide consisting of seven glucasd toroidal in shape with a hydrophobic
central cavity and a hydrophilic outer surface ibaised as phase transfer and interface reaction
catalyst. In addition, it has been shown f{h&D is capable of reversible formation of the host—
guest complexes through noovalent bondings in the cavity upon installationtransition
metals and can be used effectively for catalytgaarc reactions [53-55]. Host—guest interaction
and metal-ligand coordination are significant naadent interactions to form catalytically

active transition-metal complexes for organic reens [56,57].



In the last decade, we devoted our research tdaewew heterogeneous and reusable catalysts
for promoting greener catalytic reactions. Magneanoparticles have attracted much attention
as supports for heterogeneous catalysts due toeghse of separation, recoverability, chemical
stability, high surface area and ability to be fumtalized [58].

In continuation of our laboratory interests in depeng environmentally procedures [59], now
we have focused of;-CD as a greener supramolecular compound and biamias a
nucleophilic natural amino acid. Copper (II) imma®d on L-argining3-cyclodextrin-
functionalized magnetite nanoparticles were sudokgssynthesized and fully characterized,
then these synthesized magnetic nanoparticles werployed as a highly efficient and
recoverable green catalyst for direct oxidatiopmary alcohols and benzyl halides to acids in

neat conditions.

2 Experimental

2.1 Materialsand I nstrumentation

All reagents and solvents were purchased from adgpeicommercial suppliers and used without
further purification. All reactions were carriedton the air. All reported yields are isolated
yields. FT-IR spectra were obtained over the redid®4000 crit using a Nicolet IR100 FT-IR
with spectroscopic grade KBr. The X-ray diffractipattern was obtained at room temperature
using a Philips X-pert 1710 diffractometer with €a (o = 1.78897 A), 40 kV voltage, 40 mA
current and in the range 100- 90@)@ith a scan speed of 0.020/s. SEM (Philips XLaBd S-
4160) was utilized to study the catalyst morpholagy size. Magnetic saturation of the catalyst
was obtained using a vibrating magnetometer/ alterg gradient force magnetometer
(VSM/AGFM, MDK Co., Iran). Thermal gravimetric aryais was recorded using a thermal
analyzer with a heating rate of 2D min™ over a temperature range of 25-1iGunder flowing
nitrogen. ICP analyse was performed using a Vavlata-Pro ICP-OE spectrometéH NMR
and**C NMR spectra were recorded on a Bruker Avance (8B MHz and DRX 500 MHz)

in a pure deuterated CHColvent with tetramethylsilane (TMS) as an intéstandard.

2.2 Preparation of FesO,@L-arginine
5 mmol FeG.6H,O and 2.5 mmol FeghH,O salts were dissolved in 50 ml water under
vigorous stirring. An aqueous ammonia solution ¥a8/w, 30 ml) was then added to the stirring

mixture to reach the reaction pH about 11, follovisdadding 1.5 mmol of L-arginine. This



mixture was refluxed at 10@ for 8 h. The resulting nanoparticles were coddamnagnetically

and washed several times with water and ethanotisad in an oven at 8C.

2.3 Preparation of FesO4@L -arginine-CD-Cu(l1)

At first tosylation of CD was performed accordirgythe former procedure [53]. Typically, p-
toluenesulfonyl chloride (5mmol) was added to aisoh of pyridine containing 10 mmol CD,
the suspension was cooled to@and kept for 24 h. Upon completion, cold watesadded to
the mixture in order to afford a white precipitaiée resulting precipitate was filtered and dried
in oven. To synthesize the J&a@L-arginine-CD ,-cyclodextrin-OTS (0.25 gr) was dispersed
in dry toluene under stirring conditions. The régigl mixture was added to the suspension of
Fe;O,@L-arginine (0.5 gr) in dry toluene. After thatetimixture was refluxed for 18 h. The
resulting nanoparticles were concentrated by magmetcantation and washed several times
with toluene (2x 100 mL), ethanol (2x 100 mL) amafly diethyl ether, followed by drying in
an oven.

The resultant nanoparticles were dispersed in 20 ohLwater and then 2 mmol of
Cu(OAC).2H,0 in 30 ml of water was added, the resulting susieenwas stirred at room
temperature. After 24 h, nanoparticles were sepdrasing an external magnet and washed

several times with water and ethanol and driechio\aen overnight.

2.4 General procedurefor oxidation of primary alcohols and benzyl halides using

FesO4@L -arginine-CD-Cu(l )

An appropriate primary alcohol (1.0 mmol) or benhglide (1.0 mmol) was added into a test
tube containing 40 mg catalyst and 4 mmol of tettitbhydroperoxide (TBHP 70 wt%) under
solvent free conditions. Then the suspension wagnetally stirred for 5 h at 90C. The
progress of the reaction was monitored by TLC. A&iempletion of the reaction, an aqueous
solution of potassium hydroxide was added to tkealteng mixture followed by separation of the
catalyst from the mixture by an external magneteAseparation of the catalyst, it was washed
with ethanol (2x 10 mL) and dried in an oven fange in subsequent reactions under the same
conditions. Then the resulting solution was exgdawith ethyl acetate and aqueous phase was
separated, then hydrochloric acid was added drepwasthe aqueous solution to reach the
mixture pH about 11 and finally the obtained migtwas extracted with ethyl acetate. The

organic phase was separated and evaporated td #ifodesired product in pure form.



3 Reaults and Discussion

The procedure for the synthesis of the catalytistaayp is shown in Scheme 1. 386g
nanoparticles were prepared according to conveditioo-precipitation method of ferrous and
ferric ions in alkali solution. The abundant sudalydroxyl groups of R©, provide this
possibility for grafting of arginine on these matio@anoparticles. Subsequently, the reaction of
modified magnetic nanoparticles wiltCD-OTS, obtained from the treatment D (B-
cyclodextrin) and TsClpttoluenesulfonylchloride), led to the desired mdgneanoparticles-
supported organocatalyst. Finally, treatment of rgirane{3-CD-functionalized magnetite
nanoparticles with Cu(OAg)in MeOH for 24h provided R®,@L-arginine-CD-Cu(ll).
According to the previous reports [56,57], and bysidering the presence [pcyclodextrin and
L-arginine functional groups that can act respetyivas good host and active ligand for
immobilizing copper species, it can be expected there are two coordinated Cu(ll) ions on

each chain.
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Scheme 1. Preparation of nano-E@,@L-arginine-CD-Cu(ll).



The synthesized catalyst was fully characterizedgusarious instrumental techniques such as
FT-IR, XRD, SEM, EDX, TGA, ICP and VSM. The FT-IRextra of the magnetic nanopatrticles
show the peaks that confirm the successful syrdhafsihe catalyst [60]. The FT-IR spectra of
Fe;04, FeOs@L-arginine, FeO,@L-arginine-CD-Cu(ll)are shown in Figure 1. The typical
peak of Fe-O stretching vibration in 567 tndemonsrate the formation of magnetite
nanoparticles. In the spectrum for arginine-fun@iezed magnetic nanopatrticles, the peak
appearing at 1626 cfris ascribed to the COO stretching vibrations. ¢ams that the L-arginine
was supported on the magnetite surface. The bar282a cm' and 3414 ci can be attributed

to the stretching vibrations of —GHand —OH groups ir8-CD. Meanwhile, the successful
attachment of-CD on the surface of E@,@arginine can be clearly confirmed by the observed
characteristic peaks at 1026, 1153 and 1219, avhich could be attributed to the antisymmetric
glycosidic C—O—C vibration and the coupled C-C/Gt@tching vibration.
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Figure 1. The FT-IR spectra of the @, (a), FgO,@L-arginine (b) and R®,@L-arginine-CD-Cu(ll)c).

The surface morphology of the prepared catalystevatuated by scanning electron microscopy
(SEM). The SEM image of the catalyst showed thatpérticles of the catalyst were obtained in

nano scale and these magnetic nanopatrticles iprésence of L-arginine-cyclodextrin-Cu(ll)



have a nearly spherical shape (Figure 2a). Enelgpetsive X-ray (EDX) spectrum of the
obtained nanomaterials (Figure 2b) confirmed thesg@nce of the expected elements in the
structure of FgO,@L-arginine-CD-Cu(ll)hamely iron, oxygen, nitrogen and copper with wt%
of 87.49, 8.42, 0.60 and 0.73, respectively.
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Figure 2. a) SEM and b) EDX analysis of the catalyst.

To determine the crystalline structure of the magneanoparticles, X-ray diffraction (XRD)
pattern was studied in a domain of 10—@gure 4). It can be observed that the diffraction
peaks at around 35.1741.53, 50.53, 63.61, 67.77, and 74.61 corresponding to (220), (311),
(400), (422), (511), and (440) are quite identimakcharacteristic peaks of the standard spinel
cubic magnetite (JCPDS card no. 19-0629) and ahgrotharacteristic peaks due to the
impurities of other oxides of iron were not detecte
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Figure 4. X-ray diffraction pattern of R®,@L-arginine-CD-Cu(ll).

Thermogravimetric analysis (TGA) was performed rigeistigate the thermal behavior of the
catalyst. The TGA result of EBs@L-arginine-CD-Cu(ll) is presented in Figure 3. Theight
loss observed in TGA curve below 2@ can be mainly attributed to the water desorptiom

the magnetite surface (1.76%). Two degradatiorsstap be detected over the range of 220-550
°C, which can be attributed to the subsequent deositign of organic moieties, L-arginine and
B-CD, grafted on the surface of the magnetite nartimpes. Using TGA analysis, the content of
organic moiety in RO, @L-arginine-CD-Cu(ll) was estimated to be about522w/w%.
Moreover, the Cu content of the prepared catalyss @.086 mmol per gram of &@L-
arginine-CD-Cu(ll) using ICP-AES.

105.0

1000 {-rrnnnn £ e IR NS L e —

rel. Mass [%]

95.0

0 100 200 300 400 500 600 700 800
Temperature [°C]

Figure 3. TGA curve of FgO,@L-arginine-CD-Cu(ll).



Magnetic hysteresis measurements of the nanopstigere explored in an applied magnetic
field at room temperature, with the field sweepirgm —10000 to +10000 Oe using a vibrating
sample magnetometer (VSM). As shown in Figure & sfituration magnetization (Ms) value of
nanoparticles is 60.15, demonstrating that thelysdtas superparamagnetic. Some decreasing of
the value of Ms in compare to puresBg is attributed to the organic layer on the surfate
FesO4[61].
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Figure 5. Magnetization curve of F®,@L-arginine-CD-Cu(ll).

The catalytic performance of g @L-arginine-CD-Cu(ll) was investigated in the oxida of
benzyl alcohol to benzoic acid as a model readfl@able 1). As seen in entry 1, using TBHP as
oxidant in the absence of the catalyst no produas wbserved, also in the presence of pure
Fe;04, we observed that only a trace amount of benzyhaltwas oxidized (Table 1, entry 2).
Using 40 mg catalyst in the presence gOkHand meta-chloroperoxybenzoic acid (MCPBA) as
oxidant gave 20% and 10% vyield of benzoic acidpeesvely (Table 1, entry 3,4). In the next
step, when the reaction was performed in the poesé@ mg of the catalyst in neat conditions at
90 'C, we observed the formation of the most amourihefdesired product, (Table 1, entry 5).
We optimized the catalyst amount and accordindp¢ootbtained results (Table 1, entries 5-8) 40
mg (0.34 mol%) of the catalyst was chosen as tledatalyst amount. Subsequently, the model
reaction was performed in different temperatureab(@ 1, entries 9-12) and the optimized
temperature was obtained (@). To examine the effect of different solvent® thodel reaction

was performed in the presence of various solvemty ®s: acetonitrile, ethanol,®, DMF,



DMSO, toluene and xylene affording desired prodingjood to excellent yields (Table 1, entries
13-20). As shown in Table 1, the best result wasinbd by carrying out the reaction using 40
mg (0.34 mol%) of F©,@L-arginine-CD-Cu(ll) at 90C in neat conditions (Table 1, entry 5).

0]

OAOH Fe;0,@L-Arginine-CD-Cu(ll), Oxidant OH

Solvent, RT to 90 °C

Scheme 2. Oxidation reaction of benzyl alcohol.

Table 1. Optimization of reaction conditions for oxidatiohbenzyl alcohol.

Entry (Cr%?lySt (Cn‘:g,‘;ﬁ)r content Oxidant Solvent Temperature'C) Yield (%)?
1 None None TBHP Neat 90 N.R

2 Fe0, None TBHP Neat 90 N.R
3 40 0.34 H,0, Neat 90 20

4 40 0.34 MCPBA Neat 90 Trace
5 40 0.34 TBHP Neat 90 92

6 45 0.39 TBHP Neat 90 92

7 20 0.17 TBHP Neat 90 35

8 30 0.26 TBHP Neat 90 60

9 40 0.34 TBHP Neat RT Trace
10 40 0.34 TBHP Neat 70 55

11 40 0.34 TBHP Neat 80 80
12 40 0.34 TBHP Neat 100 93
13 40 0.34 TBHP acetonitrile 90 60
14 40 0.34 TBHP Ethanol 90 60
15 40 0.34 TBHP H,0 90 40

16 40 0.34 TBHP DMF 90 Trace
17 40 0.34 TBHP DMSO 90 Trace
18 40 0.34 TBHP Toluene 90 20
19 40 0.34 TBHP xylene 90 15
20 40 0.34 TBHP mesitylene 90 15

Reaction conditions: benzyl alcohol (1.0 mmol), @4t (4.0 mmol), Catalyst ( 40 mg), 5 h in neatditons.
dsolated yields.

To demonstrate the generality of this protocol, shepe of the reaction was investigated under
the optimized conditions and the results are sunzedrin Tables 2. We found that these
conditions are useful for a wide range of primdophols and benzyl halides. Different benzylic
alcohols, including those with either electron-wlitiwing or electron-donating groups, were

oxidized to the benzoic acids in quantitative yi€lchble 2, entries 1-9). When allylic and



furfuryl alcohols were employed as substrate, theesponding acids were generated in high
yields (Table 2, entries 10, 11). Aliphatic alcolas oxidized slower than the others (Table 2,
entry 12). When various benzyl halides were empulayethe reaction, the corresponding acids
were obtained in good to excellent yields (Tabler#ries 13-20). Following the same procedure
as described above, when benzyl cyanide was ubed¢drresponding acid was obtained in
excellent yield (Table 2, entry 21).

Table 2. Oxidation reaction of primary alcohols and benzlides.

Yield
Entry Substrate Product (%)
CO,H
o g™ -
OH CO,H
2 90
MeO MeO
OH COzH
3 89
HO HO
OH CO,H
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O.N O,N
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NO, NO,
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CO,H

Cl
15 87
Me Me
cl CO,.H
16 80
Cl Cl Cl Cl
CO-H
O g
18 65
OZN 02N
19 80
F F
Br CO.H
20 75
Br Br
CO-H
S CA e

Reaction conditions: benzyl alcohol or benzyl haiat benzyl cyanide (1.0 mmol), (TBHP 70 wt%) (th6hol), FeO,@L-
arginine-CD-Cu(ll) ( 40 mg), 5 h in neat conditions
dsolated yields.

The plausible mechanism for the oxidation of bedmafldes and benzyl alcohols in the presence
of catalyst is shown in scheme 2. In the first dtgpusing of Cu and TBHP, activated benzyl
halide produced carbonyl group ameft-butanol. In the second step, carbonyl group was

activated and oxidized to benzoic acid.
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Scheme 3. Proposed mechanism for oxidation of benzyl alcobehzyl halide and benzyl cyanide using@DL-
arginine-CD-Cu(ll).

The recyclability and reusability are very impott@oints for heterogeneous catalysis systems.
In order to examine the reusability of the cataipsbxidation reaction of primary alcohols to
acids, the model reaction was repeated under gmdniconditions. In each cycle, after
completion of the reaction, the catalyst was magaky concentrated and washed with ethanol
several times, dried and was used in the next cy¢tefound that the catalyst was recovered for

five runs without considerable loss of its actiyigg shown in Figure 6.
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Figure 6. Recyclability of the synthesized catalyst.



In this research, we also measure the amount chileg of copper from the heterogeneous
catalyst in the oxidation reaction by ICP analyBist this purpose, the catalyst was removed by
magnetic decantation after the oxidation reactidnbenzyl alcohol to benzoic acid was
completed and the copper content of the filtraterahe first reaction was determined to be only
0.34%. Moreover, the copper loading amount before after recycling of the catalyst was
checked by ICP analysis and it was observed thetctpper content of this catalyst did not
decrease appreciably after the reaction.

4 Conclusions

In conclusion, we have developed a highly efficienabust and recoverable green catalyst,
copper immobilized on magnetically separable L+argif-cyclodextrin ligand system, for

direct oxidation of primary alcohols, benzyl haBdand benzyl cyanide to acids in neat
conditions that was observed to proceed well amdlysts were obtained in good yields. In
addition, recovery and reusability of the catalyate been investigated in oxidation reaction of
benzyl alcohol to benzoic acid and the catalyst veased in at least five cycles without a

significant loss of activity.
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Highlights

* Cu (II) immobilized on L-arginine-p-CD-functionalized magnetite nanoparticles was well
synthesized

» The synthesized catalyst was fully characterized by using various analytical techniques

e Thecatalyst was used in the oxidation of primary alcohols and benzyl halides to acids

* The reactions were carried out in neat conditions to obtain products in good yields

» Thecatayst was simply recycled and reused at least five times with little lossin activity
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