System SrGa₂S₄–LaGaS₃

V. O. Aliev and K. L. Shirinov

Tusi State Pedagogical University (Azerbaijani International University), Baku, Azerbaijan Received March 20, 1998; in final form, August 4, 1998

Abstract—Phase relations in the $SrGa_2S_4$ -LaGaS₃ system were studied by physicochemical analysis, and the $SrGa_2S_4$ -LaGaS₃ phase diagram was mapped out. The system was found to contain the quaternary compound $SrLaGa_3S_7$, which melts congruently at 1290 K and has a tetragonal structure. The composition ranges of the $SrGa_2S_4$ - and $SrLaGa_3S_7$ -based solid solutions were determined.

In earlier studies [1, 2], the EuGa₂S₄-LaGaS₃ and CaGa₂S₄-LaGaS₃ systems were found to contain quaternary compounds with the MLaGa₃S₇ stoichiometry, These compounds were shown to be wide-gap *p*-type semiconductors [3]. CaLaGa₃S₇ has a tetragonal structure with a = 9.50 Å and c = 6.16 Å [4].

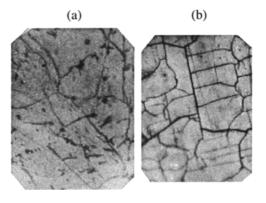
In this communication, we report our results on the $SrGa_2S_4$ -LaGaS₃ system.

SrGa₂S₄ (S₁) is known to crystallize in the orthorhombic system with a = 20.64 Å, b = 20.49 Å, and c = 12.21 Å ($\rho_{\text{meas}} = 3.62$ g/cm³, $\rho_x = 3.64$ g/cm³) [5]. LaGaS₃ (S₄) has a monoclinic structure with a = 10.33 Å, b = 12.82 Å, c = 10.56 Å, and $\gamma = 98.90^{\circ}$ ($\rho_{\text{meas}} = 4.32$ g/cm³, $\rho_x = 4.35$ g/cm³) [6, 7].

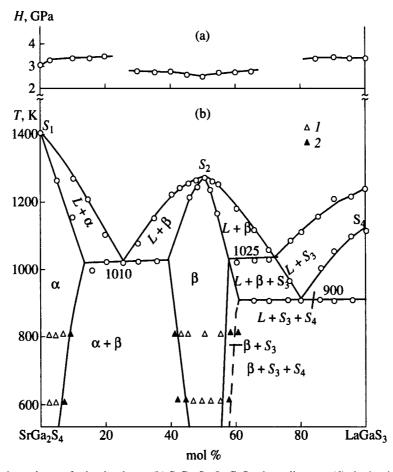
According to Petere and Baglie [8], $SrGa_2S_4$ melts congruently at 1400 K. LaGaS₃ was reported to form peritectically [7].

In our preparations, $SrGa_2S_4$ and $LaGaS_3$ were presynthesized from SrS, Ga_2S_3 , and La_2S_3 . Quaternary alloys were prepared by reacting appropriate mixtures at 1200 K for 8–10 h in evacuated quartz tubes, followed by homogenization at 900–950 K for 130–135 h, depending on composition. The samples ranged in color from yellow to yellow-orange.

The alloys were characterized by differential thermal analysis (NTR-70 unit), x-ray diffraction (DRON-3 powder diffractometer, CuK_{α} radiation), microstructural analysis (MIM-7 optical microscope), microhardness tests, and density measurements.


The temperature was measured with an accuracy of ± 5 K. Lattice parameters were determined to within ± 0.01 Å. The accuracy in density and microhardness measurements was $\pm 10\%$ or better.

Microstructural examination showed that the melted alloys containing 0–4 and 47–54 mol % LaGaS₃ were single-phase, with sharp grain boundaries (Fig. 1). The other alloys were two-phase. The same was evidenced by microhardness measurements: the measured microhardness values were found to fall in three distinct ranges, 3000–3120, 2740–2890, and 3090–3130 MPa, corresponding to the α -phase (SrGa₂S₄-based solid solution), β -phase (SrLaGa₃S₇-based solid solution), and LaGaS₃.


The SrGa₂S₄-LaGaS₃ phase diagram constructed on the basis of the present results is displayed in Fig. 2b. The system contains the quaternary compound SrLaGa₃S₇ (S_2) and narrow composition ranges of the α and β -phases. SrLaGa₃S₇ melts congruently at 1293 K.

The SrGa₂S₄-LaGaS₃ phase diagram can be regarded as consisting of two partial phase diagrams: SrGa₂S₄-SrLaGa₃S₇ and SrLaGa₃S₇-LaGaS₃. SrGa₂S₄ and SrLaGa₃S₇ form a eutectic at 25 mol % LaGaS₃ with the melting point at 1010 K. The composition range of the α -phase extends to 10 mol % LaGaS₃ at 1010 K. With decreasing temperature, the solubility of SrLaGa₃S₇ in SrGa₂S₄ decreases to 4 mol %, which leads to precipitation of the β -phase in the form of small platelets embedded in the α -phase matrix. SrLaGa₃S₇ exists in the composition range 47–54 mol % LaGaS₃ and has a tetragonal structure with a = 9.45-9.54 Å and c = 6.14-6.18 Å.

The SrLaGa₃S₇-LaGaS₃ join is nonpseudobinary, because of the incongruent melting of LaGaS₃. This

Fig. 1. Microstructures of $SrGa_2S_4$ -LaGaS₃ alloys containing (a) 4 and (b) 50 mol % LaGaS₃; ×57.5.

Fig. 2. (a) Composition dependence of microhardness; (b) $SrGa_2S_4$ -LaGaS₃ phase diagram: (1) single-phase alloys, (2) two-phase alloys; $S_1 = SrGa_2S_4$, $S_2 = SrLaGa_3S_7$, $S_3 = La_6Ga_{10/3}S_{14}$, $S_4 = LaGaS_3$.

join intersects two primary-crystallization fields—those of the β -phase and La₆Ga_{10/3}S₁₄. The corresponding branches of the liquidus intersect at 71.5 mol % LaGaS₃ (1025 K). The primary crystallization of S₃ is followed by the three-phase peritectic reaction $L + S_3 = S_4$.

Note that, in the composition range 70–100 mol % $SrGa_2S_4$, liquid quenching yielded glassy alloys. The DTA curves of these alloys showed prominent endotherms between 840 and 850 K. According to DTA data, the glass-transition temperature of the $SrGa_2S_4$ -rich alloys rises from 820 to 830 K with increasing $SrLaGa_3S_7$ content. The glass of composition $SrGa_2S_4$ was found to crystallize most readily.

X-ray diffraction data demonstrate that SrLaGa₃S₇ is isostructural with CaLaGa₃S₇ and has a tetragonal structure with a = 9.54 Å and c = 6.18 Å (V = 562.45 Å³, sp. gr. $P\bar{4}2_1m$, Z = 2).

REFERENCES

Aliev, V.O., Agaev, A.B., and Magerramov, E.V., Synthesis and Physicochemical Properties of Ce₂MnS₄ and EuLaGa₃S₇, *Zh. Neorg. Khim.*, 1994, vol. 30, no. 12, pp. 1527–1528.

- Agaev, A.B., Aliev, V.O., and Aliev, O.M., Synthesis, X-ray Diffraction Study, and Physical Properties of Compounds with Y₅S₇-Derived Structures, *Zh. Neorg. Khim.*, 1996, vol. 41, no. 2, pp. 319–325.
- Aliev, V.O., Synthesis, Structure, and Physicochemical Properties of MLnGa₃S₇ (M = Eu, Ca, Sr, Ba) and ZnNd₂S₄, *Extended Abstract of Cand. Sci. (Chem.) Dis*sertation, Baku, 1997.
- Mazurier, A., Yaulmes, S., and Guittard, M., Structure cristalline de Ca₂La₂Ga₃S₇, Acta Crystallogr, Sect. C: Cryst. Struct. Commun., 1987, vol. 43, pp. 1854–1862.
- 5. Vorotilov, Yu.V., Evstigneeva, T.L., and Nekrasov, I.Ya., Kristallokhimicheskie tablitsy troinykh khal'kogenidov (Crystal-Chemical Tables for Ternary Chalcogenides), Moscow: Nauka, 1989.
- 6. Bakhtiyarov, I.B., Structural and Chemical Mechanisms of the Formation and Phase Transitions of Mixed Rare-Earth Oxysulfides, *Extended Abstract of Doctoral* (*Chem.*) Dissertation, Baku: Baku State Univ., 1995.
- Julien-Pouzol, M., Yaulmes, S., and Dagron, C., Structure du trisulfure de lanthane et de gallium LaGaS₃, Acta Crystallogr, Sect. B: Struct. Crystallogr. Cryst. Chem., 1982, vol. 38, pp. 1566–1568.
- Petere, T.E. and Baglie, J.B., Luminescence of Thiogallate Phosphors Ca²⁺ and Sr²⁺ Activated, J. Lumin., 1972, vol. 139, no. 2, pp. 230–236.

INORGANIC MATERIALS Vol. 36 No. 8 2000