Simple, Mild and Efficient Thioacetalization and Transthioacetalization of Carbonyl Compounds and Deprotection of Thioacetals: Unique Role of Thiols in the Selectivity of Thioacetalization¹

Biswanath Das,* Ravirala Ramu, Majjigapu Ravinder Reddy, Gurram Mahender

Organic Chemistry Division – I, Indian Institute of Chemical Technology, Hyderabad – 500 007, India Fax +91(40)7160512; E-mail: biswanathdas@yahoo.com Received 6 September 2004

Abstract: Silica supported sodium hydrogen sulfate (NaHSO₄·SiO₂) has been employed for efficient thioacetalization and transthioacetalization of carbonyl compounds in CH₂Cl₂ at room temperature. Selectivity of thioacetalization was dependent on the thiols used for the conversion. The same catalyst was also found to be effective for deprotection of thioacetals in CH₂Cl₂–H₂O at room temperature.

Keywords: carbonyl compounds, thioacetalization, transthioacetalization, deprotection of thioacetals, NaHSO₄·SiO₂, selectivity

Thioacetalization is an important process for protection of carbonyl group and is frequently used in the synthesis of multifunctional organic molecules.² Thioacetals are quite stable towards different reagents under various reaction conditions.² They are also useful as acyl carbanion equivalents in organic synthesis.³ The deprotection of thioacetals at the desired stage of synthesis to generate the parent carbonyl compounds is also highly required. In general, thioacetalization⁴ and dethioacetalization⁵ are carried out with various protic and Lewis acids. Despite their potential utilities many of the reported methods are associated with certain disadvantages such as treatment with strong acids, long reaction times, drastic reaction conditions, toxic reagents, expensive catalysts, multistep operations, disturbance to other functional groups and unwanted side reactions. Thus, still there is a need to develop novel and efficient methods for thioacetalization and dethioacetalization, though these conversions have been studied well.

In continuation of our work⁶ on the application of silicasupported sodium hydrogen sulfate (NaHSO₄·SiO₂) as a heterogeneous catalyst in organic synthesis we have recently observed that the catalyst can be employed efficiently for thioacetalization of carbonyl compounds as well as for deprotection of thioacetals (Scheme 1).

Several aromatic, heterocyclic, aliphatic and conjugated aldehydes were converted into thioacetals by treatment with thiols in CH_2Cl_2 in the presence of NaHSO₄·SiO₂ at room temperature (Table 1). Various Ketones also underwent thioacetalization under such treatment. The reaction was carried out with thiols of different chain lengths. The method was general for aldehydes and ketones (aromatic

Scheme 1

and aliphatic) when EtSH was used for thioacetalization. The reaction was completed within 5-10 minutes to afford the products in excellent yields. Several functional groups such as hydroxyl, ether, halogen, nitro, amino and allyl groups remained intact. Electron-donating or electronwithdrawing groups did not affect the reaction. Thioacetalization was also carried out with long chain (C-10, C-12 and C-16) thiols. The important matter is that the selectivity of the reaction was highly dependent on the thiols used for the conversion. With long chain thiols, the conversion was equally efficient for the aromatic aldehydes as with EtSH to produce the corresponding thioacetals in very high yields within 10 minutes (Table 1). However, aliphatic aldehydes or ketones (aliphatic and aromatic) afforded no product with these long chain thiols under similar experimental conditions. When the reaction times were increased to 2 hours an aliphatic aldehyde formed the thioacetals with long chain thiols with the yields of 58–64%, while a ketone formed the thioacetals with long chain thiols in yields of 15-18% only. Thus with the proper choice of reacting thiols general thioacetalization as well as selective thioacetalization of carbonyl function of aromatic and aliphatic aldehydes and ketones can be achieved (Schemes 2 and 3). Previously the role of thiols on the selectivity of thioacetalization of carbonyl compounds has not been well studied.

When thioacetalization was carried out with ethane dithiol, aldehydes were protected within 3–3.5 hours to form the thioacetals in high yields (72–81%) while ketones like acetophenone and benzophenone did not afford the dithiolanes during this period under the similar experimental conditions (Scheme 4). Thus the differences in behavior of ethane thiol and ethane dithiol towards the thioacetalization of aldehydes and ketones (regarding times and selectivity) are noteworthy.

SYNTHESIS 2005, No. 2, pp 0250–0254 Advanced online publication: 24.11.2004 DOI: 10.1055/s-2004-834934; Art ID: P10504SS © Georg Thieme Verlag Stuttgart · New York

Entry	Substrate	Product 2	Time (min)	Isolated yield (%)	Ref.
a	СНО	CH(SEt) ₂	5	98	5i
b	сіСно	CI-CH(SEt) ₂	5	96	5i
c	но-Сно	HO-CH(SEt) ₂	5	95	5i
d	н₃со-	H ₃ CO CH(SEt) ₂	5	97	5i
e	_NСно		5	94	
f	но-Сно	HO CH(SEt) ₂	5	93	5j
g	н _з со́		5	96	5j
h	н₃có	н₃со́	8	92	5i
i	O CHO		5	91	5i
j			5	94	5i
k	СНО	CH(SEt) ₂	5	97	
1		$H_3CO \longrightarrow CH(SEt)_2$	5	90	5j
m	СНО		10	93	5i
n	о сно	O CH(SEt) ₂	10	91	5j
0	СНО	CH(SEt) ₂	8	93	5j
р	СНО	CH(SEt) ₂	10	95	5i
q	но-Сно	HO-CH(SC ₁₂ H ₂₅) ₂	10	80	
r	О-Л	$CH(SC_{10}H_{21})_2$	10	78	
s	∽₂ >N-√_>−СНО	N-CH(SC ₁₂ H ₂₅) ₂	10	75	

 Table 1
 Thioacetalization and Transthioacetalization of Carbonyl Compounds Using NaHSO₄·SiO₂^a

Synthesis 2005, No. 2, 250–254 $\,$ $\,$ © Thieme Stuttgart \cdot New York

Table 1	Thioacetalization and Transthioacetalization of Carbonyl Compounds Using NaHSO ₄ ·SiO ₂ ^a (continued)

Entry	Substrate	Product 2	Time (min)	Isolated yield (%)	Ref.
t	носно	HO-CH(SC ₁₆ H ₃₃) ₂	10	75	
u		SEt SEt	10	90	5i
v	CH3	EtS SEt CH ₃	10	82	5f
w	HO CH ₃	SEt SEt CH ₃	10	78	5f
X	H ₃ CO CH(OAc) ₂	H ₃ CO — CH(SEt) ₂	10	92	5i
у		CH(SEt) ₂	5	95	5i
Z	CH(OEt) ₂	CH(SEt) ₂	10	93	5i

^a Products were characterized from their spectral (IR, ¹H NMR and MS) data.

Scheme 4

The present method is also suitable for transthioacetalization of carbonyl compounds. Different *S*,*S*-acetals have been prepared from the corresponding *O*,*O*-acetals in very high yields within a short period of time (5–10 min) (Table 1). However, *S*,*S*-acetals on treatment with ethane-1,2-diol or propane-1,3-diol in the presence of NaHSO₄·SiO₂ in CH₂Cl₂ afforded *O*,*O*-acetals at room temperature (Scheme 5).

Scheme 5

Deprotection of thioacetals was also carried out using NaHSO₄·SiO₂ at room temperature. Various thioacetals were converted into their parent carbonyl compounds (Table 2) by employing the catalyst in $CH_2Cl_2-H_2O$ (4:1) within 10–20 minutes. The yields of the carbonyl compounds were excellent. Deprotection could also be carried out in MeOH but time required was longer (2–3 h).

The catalyst, NaHSO₄·SiO₂ works under heterogeneous conditions. The catalytic activity of the reagent has not yet been explored widely. In recent years heterocyclic catalysts are of increasing attention because of economic and environmental considerations. The present catalyst can be easily prepared⁷ from the readily available ingredients, NaHSO₄ and silica gel (finer than 200 mesh). It can be easily handled and removed from the reaction mixture by filtration. The catalyst should be properly activated before use. The experimental procedures for both thioacetalization and deacetalization using this catalyst are very simple. In absence of the catalyst or only with NaHSO₄ or silica gel the protection of carbonyl compounds with thiols as well as deprotection of thioacetals under the present experimental conditions could not be achieved.

In conclusion, we have developed a very simple and efficient method for thioacetalization of carbonyl compounds

 Table 2
 Deprotection of Thioacetals Using NaHSO₄·SiO₂^a

and deprotection of thioacetals using the same catalyst $(NaHSO_4 \cdot SiO_2)$ in different solvent systems. The method is associated with mild experimental conditions, utilization of an inexpensive and non-toxic catalyst, short reaction times and excellent yields. The unique feature of the present thioacetalization is its selectivity depending on the nature of the reacting thiols. Transthioacetalization can also be achieved following the similar process. We feel that the developed method will find important applications in organic synthesis.

Melting points were measured on a Buchi 510 instrument and are uncorrected. The ¹H NMR spectra were recorded in CDCl₃ on a Varian Gemini 200 MHz spectrometer using TMS as an internal standard and EI–MS on a VG Micromass 7070H (70eV) instrument. Column Chromatography was carried out with silica gel 100–200 mesh and TLC with silica gel GF₂₅₄.

Thioacetalization and Transthioacetalization; General Procedure

To a stirred mixture of a carbonyl compound (1 mmol) or an acetal (1 mmol) and alkyl thiol (2.2 mmol) or ethane dithiol (1.2 mmol) in CH_2Cl_2 (10 mL), activated NaHSO₄·SiO₂ (200 mg) was added at r.t. The progress of the reaction was monitored by TLC. After completion of the reaction, the mixture was filtered and the filtrate was concentrated. The residue was subjected to column chromatography over silica gel and the column was eluted with EtOAc–hexane (1:4)

Entry	Substrate	Product	Time (min)	Isolated yield (%)
a	CH(SEt) ₂	СНО	10	96
b	H ₃ CO — CH(SEt) ₂	н ₃ соСно	15	93
c	CH(SEt) ₂	СНО	10	90
d	$\bigvee CH(SC_{10}H_{21})_2$	NO2 СНО	15	85
	O ₂ Ń	O ₂ N		
e	HO-CH(SC ₁₂ H ₂₅) ₂	ноСно	20	83
f	HO-CH(SC ₁₆ H ₃₃) ₂	но-Сно	20	80
	H ₃ CO	н₃со		
g	SEt SEt		15	78
h	SEt SEt CH ₃	CH3	20	76

^a Products were characterized by comparison of their spectral (IR, ¹H NMR and MS) data with those of authentic samples.

to afford pure thioacetal. The spectral and analytical data of the unknown compound are given below.

4-*N*,*N***-Dimethylbenzaldehyde Diethylthioacetal (2e)** Light yellow oil.

¹H NMR: δ = 7.30 (d, *J* = 8.0 Hz, 2 H), 6.68 (d, *J* = 8.0 Hz, 2 H), 4.86 (s, 1 H), 2.98 (s, 6 H), 2.62–2.43 (m, 4 H), 1.16 (t, *J* = 7.0 Hz, 6 H).

EIMS: *m*/*z* = 255 [M⁺], 240, 194, 179, 120.

Anal. Calcd for $C_{13}H_{21}NS_2$: C, 61.18; H, 8.24; N, 5.49. Found: C, 61.32; H, 8.17; N, 5.33.

3-Nitrobenzaldehyde Diethylthioacetal (2k)

Light yellow oil.

¹H NMR : δ = 8.28 (br d, *J* = 1.5 Hz, 1 H), 8.12 (br dd, *J* = 8.0, 1.5 Hz, 1 H), 7.80 (br dd, *J* = 8.0, 1.5 Hz, 1 H), 7.52 (t, *J* = 8.0 Hz, 1 H), 4.92 (s, 1 H), 2.58–2.46 (m, 4 H), 1.22 (t, *J* = 7.0 Hz, 6 H).

EIMS: *m*/*z* = 257 [M⁺], 196, 168, 121.

Anal. Calcd for $C_{11}H_{15}NO_2S_2$: C, 51.36; H, 7.55; N, 5.45. Found: C, 51.55; H, 7.72; N, 5.38.

4-Hydroxybenzaldehyde Didodecylthioacetal (2q)

Mp 141–143 °C.

¹H NMR: δ = 7.22 (d, *J* = 8.0 Hz, 2 H), 6.70 (d, *J* = 8.0 Hz, 2 H), 5.28 (br s, 1 H), 4.76 (s, 1 H), 2.60–2.38 (m, 4 H), 1.58–1.42 (m, 4 H), 1.38–1.04 (m, 36 H), 0.82 (t, *J* = 7.0 Hz, 6 H).

EIMS: *m*/*z* = 508 [M⁺], 307, 201, 139.

Anal. Calcd for $C_{31}H_{56}OS_2$: C, 73.23; H, 11.02. Found: C, 73.43; H, 11.18.

3-Nitrobenzaldehyde Didecylthioacetal (2r)

Mp 105-107 °C.

¹H NMR: δ = 8.22 (br d, *J* = 1.5 Hz, 1 H), 8.01 (br dd, *J* = 8.0, 1.5 Hz, 1 H), 7.78 (br dd, *J* = 8.0, 1.5 Hz, 1 H), 7.48 (t, *J* = 8.0 Hz, 1 H), 4.82 (s, 1 H), 2.62–2.38 (m, 4 H), 1.60–1.42 (m, 4 H), 1.38–1.14 (m, 28 H), 0.84 (t, *J* = 7.0 Hz, 6 H).

EIMS: *m*/*z* = 481 [M⁺], 308, 168, 140.

Anal. Calcd for $C_{27}H_{47}NO_2S_2;$ C, 67.36; H, 9.77; N, 2.91. Found : C, 67.52; H, 9.61; N, 2.83.

4-*N*,*N*-**Dimethylbenzaldehyde Didodecylthioacetal (2s)** Mp 113–115 °C.

¹H NMR: δ = 7.28 (d, *J* = 8.0 Hz, 2 H); 6.64 (d, *J* = 8.0 Hz, 2 H), 4.78 (s, 1 H), 2.96 (s, 6 H), 2.62–2.36 (m, 4 H), 1.55–1.40 (m, 4 H), 1.35–1.02 (m, 36 H), 0.81 (t, *J* = 7.0 Hz, 6 H).

EIMS: $m/z = 520 [M^+]$, 319, 201, 168.

Anal. Calcd for $C_{33}H_{61}NS_2;\,C,\,74.02;\,H,\,11.40;\,N,\,2.62.$ Found: C, 75.24; H, 11.29; N, 2.56.

4-Hydroxy-3-methoxybenzaldehyde Dihexadecylthioacetal (2t) Mp $186{-}188\ ^\circ C.$

¹H NMR: δ = 6.98 (m, *J* = 1.5 Hz, 1 H), 6.82–6.75 (m, 2 H), 5.48 (s, 1 H), 4.72 (s, 1 H), 3.91 (s, 3 H), 2.54–2.40 (m, 4 H), 1.57–1.46 (m, 4 H), 1.38–1.19 (m, 52 H), 0.86 (t, *J* = 7.0 Hz, 6 H).

EIMS: *m*/*z* = 650 [M⁺], 635, 378, 257, 224, 123.

Anal. Calcd for $C_{40}H_{74}O_2S_2$: C, 73.85; H, 11.39. Found: C, 73.72; H, 11.46.

Deprotection of Thioacetals; General Procedure

Thioacetal (1 mmol) and NaHSO₄·SiO₂ (200 mg) were taken in $CH_2Cl_2-H_2O$ (4:1, 10 mL). The mixture was stirred at r.t. After completion of the reaction the mixture was filtered. The concentrated filtrate was purified by column chromatography over silica gel using EtOAc–hexane (1:4) as eluent to produce the corresponding parent carbonyl compound.

Acknowledgment

The authors thank UGC, New Delhi for financial assistance.

References

- Part 39 in the series 'Studies on novel synthetic methodologies'; IICT Communication No. 041106.
- (2) (a) Greene, T. W.; Wuts, P. G. M. Protective Groups in Organic Synthesis, 2nd ed.; Wiley: New York, **1991**, 178– 207. (b) Kocienski, P. J. Protecting Groups; Thieme: Stuttgart, **1994**, 156–170.
- (3) (a) Corey, E. J.; Seebach, D. Angew Chem. Int. Ed. Engl. 1965, 4, 1075. (b) Corey, E. J.; Seebach, D. J. Org. Chem. 1966, 31, 4097.
- (4) (a) Colvin, E. W.; Raphael, R. A.; Roberts, J. S. J. Chem. Soc., Chem. Commun. 1971, 858. (b) Corey, E. J.; Erickson, B. W. J. Org. Chem. 1971, 36, 3553. (c) Ho, T. L.; Ho, H. C.; Wong, C. M. J. Chem. Soc., Chem. Commun. 1972, 791. (d) Dishi, T.; Kamemoto, K.; Ban, Y. Tetrahedron Lett. 1972, 13, 1085. (e) Ellision, R. A.; Lukenbach, E. R.; Chiu, C. W. Tetrahedron Lett. 1975, 499. (f) Schmittel, M.; Levis, M. Synlett 1996, 315. (g) Hirano, A.; Ukawar, K.; Yakabe, S.; Clark, J. H.; Morimoto, T. Synthesis 1997, 858.
- (5) (a) Dijerassi, C.; Gorman, M. J. Am. Chem. Soc. 1953, 75, 3704. (b) Fieser, L. F. J. Am. Chem. Soc. 1954, 76, 1945. (c) Olah, G. A.; Narang, S. C.; Meider, D.; Salem, G. F. Synthesis 1981, 282. (d) Corey, E. J.; Shimoji, K. Tetrahedron Lett. 1983, 24, 169. (e) Page, P. C. B.; Prodger, J. C.; Westwood, D. Tetrahedron 1993, 49, 10355. (f) Tateiwa, J.; Horiuchi, H.; Uemura, S. J. Org. Chem. 1995, 60, 4039. (g) Firouzabadi, H.; Iranpoor, N.; Karimi, B. Synthesis 1999, 58. (h) Yadav, J. S.; Reddy, B. V. S.; Pandey, S. K. Synlett 2001, 238. (i) Kamal, A.; Choudhan, G. Tetrahedron Lett. 2003, 44, 3337. (j) Yadav, J. S.; Reddy, B. V. S.; Reddy, B. V. S.; Kondaji, G. Chem. Lett. 2003, 32, 672.
- (6) (a) Mahender, G.; Ramu, R.; Ramesh, C.; Das, B. *Chem. Lett.* 2003, *32*, 734. (b) Ramesh, C.; Banerjee, J.; Pal, R.; Das, B. *Adv. Synth. Catal.* 2003, 557. (c) Ramesh, C.; Ravindranath, N.; Das, B. *J. Org. Chem.* 2003, *68*, 7101.
- (7) Breton, G. W. J. Org. Chem. 1997, 62, 8952.