
Inorganic Chemistry Communications 55 (2015) 135–138

Contents lists available at ScienceDirect

Inorganic Chemistry Communications

j ourna l homepage: www.e lsev ie r .com/ locate / inoche
Green oxidation of alcohols in water by a polyoxometalate nano capsule
as catalyst
Elham Nikbakht a, Bahram Yadollahi a,⁎, Mostafa Riahi Farsani b

a Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
b Young Researchers and Elite Club, Islamic Azad University, Shahrekord Branch, Shahrekord, Iran
⁎ Corresponding author.
E-mail addresses: yadollahi@chem.ui.ac.ir, yadollahi.b@

http://dx.doi.org/10.1016/j.inoche.2015.03.030
1387-7003/© 2015 Elsevier B.V. All rights reserved.
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 9 December 2014
Received in revised form 16 January 2015
Accepted 14 March 2015
Available online 17 March 2015

Keywords:
Keggin-type polyoxometalate
Keplarates
Catalysis
Oxidation
Alcohols
Hydrogen peroxide
Water
In this work a water soluble polyoxometalate nano capsule, HxPMo12O40 ⊂ H4Mo72Fe30(CH3COO)15O254, with
high stability was evaluated for the oxidation of various alcohols into the corresponding aldehydes and ketones
by hydrogen peroxide. This environmentally and economically valuable catalyst allowed for using water as
solvent and has not required any organic solvents. In the presence of very low amounts of catalyst high to
excellent yields and selectivity were obtained.

© 2015 Elsevier B.V. All rights reserved.
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One of themost frequently used reactions in organic synthesis is the
oxidation of the hydroxyl groups into the corresponding carbonyl
compounds. The oxidation of alcohols is traditionally carried out with
stoichiometric and even over-stoichiometric amounts of metal oxides
or metal salts [1,2]. These oxidants are not only relatively expensive,
but they also generate copious amounts of heavy-metal waste. More-
over, the reactions are often performed in environmentally undesirable
solvents, typically chlorinated hydrocarbons. In an effort to provide a
more environmentally benign “green” process, a variety of catalytic
alcohol oxidations that used dioxygen (O2) or hydrogen peroxide
(H2O2) have been investigated [3]. These oxidants are atom efficient
and produce water as the only by-product [4]. Although the advantages
of using hydrogen peroxide as oxidant in alcohol oxidation are evident,
reports on this particular subject are still scarce [5].

Polyoxometalates (POMs), as metal–oxygen cluster species have ob-
tained extensive attention [7–9]. They have been of extreme interest as
oxidation catalysts due to their unique ensemble of properties, including
metal oxide-like structure, thermal and hydrolytic stability, tunable acid-
ities and redox potentials, alterable solubility in variousmedia, their resis-
tance toward oxidation, and compatibility with various oxygen sources.
Many examples of homogeneous and heterogeneous systems make use
of different types of POMs in organic solvents [10–14]. Unfortunately,
most of thesemethods need to hard conditions such as high temperature,
hazardous or toxic solvents and so on, and also one ormore equivalents of
gmail.com (B. Yadollahi).
non-environment oxidizing agents. From an economic and environmen-
tal viewpoint, mild condition, green solvents and nontoxic oxidation
agents are extremely valuable. Especially in POMs, few efficient and cata-
lytic oxidation processeswithhydrogenperoxide and green solvents such
as water that proceed under mild conditions are known [15–17].

When oxidations could be performed in water, they would be
considerably safer, cheaper, and more environmentally friendly than
other processes in use [5,6]. Moreover, when a water-soluble catalyst
is used in a biphasic system, most products can be separated by simple
decantation, and the catalyst solution could be recycled. Nevertheless,
such reactions are still rare and lack generality. In contrast, the use of
Scheme 1. Selective oxidation of various alcohols with HxPMo12O40 ⊂
H4Mo72Fe30(CH3COO)15O254 in water.
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Fig. 1. Screening the stability of HxPMo12O40 ⊂ H4Mo72Fe30(CH3COO)15O254 nano capsule
in the oxidation of benzyl alcohol at different pH's by UV–vis.

Table 1
Selective oxidation of various alcohols to the corresponding carbonyl compounds in the presen
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a Reaction conditions: alcohol (1 mmol), catalyst (1 μmol), water (3 mL), and 30% H2O2 (4.5
b Yields are quantitative and refer to GC yields.
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an organic solvent, such as toluene or acetonitrile, necessitates a tedious
distillation and cumbersome recovery of the catalyst.

Spherical porous molybdenum-oxide-based capsules of the type
{(MVI)MVI

5}12(linker)30 (M = Mo or W), called Keplerates, are multi-
functional nano-objects which have allowed the study of several new
phenomena and have been the basis of many applications due to their
unique structural features and properties [18–27]. Among them, the
{Mo72Fe30}-type species – comprising 12molybdenum-oxide-based pen-
tagonal units linked by 30 FeIII spacers that span an icosidodecahedron –

have attracted considerable attention since their initial report in 1999
[7–9]. The unique spherical Keplerates of the type {Mo72Fe30} have
received a lot of attention because of their magnetic properties as well,
although their catalytic properties in the oxidation of organic reactions
really lag behind [28–32].

In this work, a core–shell hybrid made of Keggin-type
heteropolyoxomolybdates encapsulated into {Mo72Fe30}-type Keplerates,
HxPMo12O40 ⊂ H4Mo72Fe30(CH3COO)15O254 [25–27] (Scheme 1) was
used as catalyst for the oxidation of alcohols by H2O2 in water and espe-
cially in a sustainable medium [33,34]. After preparation of POM nano
ce of POM nano capsule catalyst.a
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capsules, PMo12O40 ⊂ {(Mo)Mo5}12{FeIII}30, according to the literature,
their synthesis was confirmed by elemental analysis, TG, FTIR, XRD, and
UV–vis spectroscopy (Figs. S1–S4) [27]. Catalytic experiments were initi-
ated by the oxidation of benzyl alcohols (1mmol), as amodel compound,
with H2O2 (4.5 mmol) in the presence of 1 μmol POM nano capsule in
bidistilled water at 45 °C [35]. Only after 45 min, using a few amounts
of catalyst (1 μmol), benzyl alcohol completely converted and benzalde-
hyde was produced exclusively in 100% yield by an easy isolation with
ethyl acetate as a safe solvent.

Since the structure of POMs is pH dependent, the oxidation of enzyl
alcohol was run at different pH values (Fig. 1). When the pH value was
adjusted to less than or equal to 6.6, exactly the same conversions and
selectivity were obtained. Nevertheless, since the HxPMo12O40 ⊂
H4Mo72Fe30(CH3COO)15O254 nano capsule became less stable at
higher pH values, low oxidation activity was observed; consequently,
the clusters are broken as established by UV–vis study. Note that all
POMs decompose at high pH values, while smaller species are formed
[27].

Using the best reaction conditions and to establish the general appli-
cability of themethod, various alcohols were subjected to the oxidation
protocol using H2O2 and HxPMo12O40 ⊂ H4Mo72Fe30(CH3COO)15O254.
By these very mild reaction conditions – 1 μmol nano capsule catalyst,
4.5 mmol H2O2, 45 °C, and 0.5–2.5 h oxidation reaction in water – to a
reasonable extent various benzylic alcohols produced target aldehydes
and/or ketones in excellent yields (Table 1). This catalytic system
efficiently worked both in the presence of electron-donating or
electron-withdrawing substituent as well as in less sterically favored
positions on the aromatic rings (Table 1, entries 1 to 13). Our catalytic
process was also amenable to cyclic alcohols (Table 1, entries 14 and
15) and high yields were observed for linear alcohols and allyl alcohol
(Table 1, entries 16 to 18). By increasing the time of reaction, complete
conversion was obtained for most substrates with the exception of aro-
matic alcohols with electron donating groups (Table 1, entries 11 to 13)
that only provided high yields atmoderate times. As everyone could see
in Table 1, this catalytic system possesses novelty regarding selectivity
only for aldehydes and ketones. It was shown that secondary and pri-
mary linear and aromatic alcohols were oxidized selectively (greater
than 99%) to ketones and aldehydes, respectively, with no further
oxidation of aldehydes to carboxylic acids.

For comparison the catalytic activity of H3PMo12O40 and
H4Mo72Fe30(CH3COO)15O254 in the oxidation of benzyl alcohol at the
same conditions were also investigated. Results for H3PMo12O40 showed
only 20% conversion after 60 min and for H4Mo72Fe30(CH3COO)15O254

demonstrated that 120 min oxidation reaction is needed for complete
conversion of alcohol.

In this procedure, the POMnano capsule catalyst was reused several
times without any loss of activity. Recovery of the catalyst was easy and
efficient. When the reaction was completed, hydrophobic organic
products were isolated by adding ethyl acetate as a safe solvent. Then
Fig. 2. Recyclability of the POM nano capsule catalyst in the oxidation of benzyl alcohol
with hydrogen peroxide in water according to the procedure mentioned in Table 1.
aqueous solution of catalyst was reused directly for the next round of re-
actions without further purification. The solid catalyst HxPMo12O40 ⊂
H4Mo72Fe30(CH3COO)15O254 could also be obtained easily by removing
the water followed by washing with ethyl acetate or ethanol and drying
under vacuum. The ease of recovery, combinedwith the intrinsic stability
of the HxPMo12O40⊂H4Mo72Fe30(CH3COO)15O254, allows for the catalyst
to be recovered efficiently over 10 times in the oxidation of benzyl alcohol
(Fig. 2). Only after the ninth run was a negligible decrease in catalyst
performance (b2%) observed. Therefore, these POM catalysts showed
high stability, activity and selectivity in oxidation reaction runs.

Comparison between FTIR, XRD, and UV–vis spectra of the used cat-
alyst with those of fresh one (Figs. S1–S3) illustrated that the structure
and morphology of the catalyst remained completely intact. Therefore,
the title methodology is environmentally benign because of the use of
hydrogen peroxide as an oxygen source, water as a reaction media, re-
usability of an active catalyst, very low catalyst loading, easy isolation
of hydrophobic organic products, and as a final point no need for toxic
reagents or solvents. These advantages make this catalytic method
readily amenable to scalability.

In summary, greenoxidation of different alcohols into aldehydes and
ketones by a water soluble POM nano capsule was developed. High to
excellent yields were obtained in the oxidation reactions by
HxPMo12O40 ⊂ H4Mo72Fe30(CH3COO)15O254 as catalyst. This catalytic
system is valuable because of easy and safe procedure and also from
the environmental point of view. As a result, this method could have
high potential for industrial purposes.
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