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Abstract
This work reports two systematic studies related to yttrium vanadate (YVO4) phosphors. The first evaluates how the annealing
temperature and V5+/Y3+ molar ratio determine the emergence of a single YVO4 tetragonal phase, whereas the second concerns
the optimal Nd3+ concentration to improve the infrared emission properties for bio-labelling applications. The YVO4:Nd phos-
phors were synthesized by adapting the non-hydrolytic sol–gel route. For the first study, samples containing different V5+/Y3+

molar ratios (1.02, 1.48, 1.71, or 3.13) were obtained. For the second study, YVO4:Nd phosphors containing different Nd3+

concentrations (1.0, 3.0, 5.0, or 10.0% in mol) were prepared. X-ray diffractometry and RAMAN spectroscopy results revealed
that, regardless of the heat-treatment temperature, the V5+/Y3+ molar ratio of 1.48 was the best composition to avoid undesired
phases like Y2O3 and V2O5. Photoluminescence results indicated that the sample containing 3.0% inmol of Nd3+ and annealed at
1000 °C presented the best infrared emission properties. This sample displayed an intense broad band in the ultraviolet region,
which was ascribed to the VO4

3− charge transfer band, as well as several bands in the visible and infrared regions, which were
attributed to the Nd3+ intraconfigurational f-f transitions. Regardless of the excitation wavelength (ultraviolet, visible, or near-
infrared), the mean radiative lifetimewas about 12.00 µs. The prepared phosphors presented absorption and emission bands in the
biological window (BW) regions, which are located between 750 and 900 nm and between 1000 and 1300 nm, so they are
candidates for applications in medical imaging and diagnoses.
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Introduction

The YVO4 matrix, which was first introduced by Levine and
Palila in 1964 [1], has been extensively studied due to its proper-
ties, such as low-energy phonon (around 890 cm− 1) [2]. In addi-
tion, its optical, mechanical, and thermal characteristics are funda-
mental for light emitters [3, 4] and laser hosts [5, 6]. Moreover,
when this matrix is doped with lanthanide ions, it presents highly
efficient luminescence to excitation by an electron beam, leading
to applications in lamps, displays, scintillation detectors, TVs, and
cathode ray [7, 8]. Different lanthanide ions have been used to

achieve emission in regions of interest for use in red (YVO4:Eu)
[7–12], blue (YVO4:Tm) [13], or orange (YVO4:Sm) [14, 15]
emitting devices, for example. Besides emitting in the visible re-
gion, some lanthanide ions display excitation and emission in the
infrared region, which is very attractive for medical imaging ap-
plications. Nd3+ perfectly fits these requirements: Nd3+-dopedma-
trixes can be effectively excited in the near infrared region (at about
800 nm, which corresponds to the first biological window, desig-
nated I-BW), and they exhibit intense emission lines around
1060 nm (whichmatches the second biological window, designat-
ed II-BW), which paves the way for applications in living tissue
imaging and nanothermometry [16–25].

Luminescent bio-imaging is widely employed in biomedical
sciences. Its applications range from morphological analysis of
the anatomical structure to sensitive measurements of intracellu-
lar molecular events, and it has several advantages like improved
selectivity and sensitivity as compared to conventional imaging
methods [26, 27]. Among the various processes that can be used
to obtain inorganic matrixes, the non-hydrolytic sol–gel route
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stands out because it provides strict control of stoichiometry,
powder morphology, and phase purity; the cations are distributed
all over the structure; and the oxo bonds originate from oxygen
atoms of donors other than water [28–31]. Furthermore, this
route dismisses the need for solvents andmay reduce or eliminate
the formation of residual metal-OH groups. The mechanisms of
the non-hydrolytic sol–gel route have been extensively discussed
in the literature [28, 32, 33]. Here, aiming at medical imaging
applications, we report the optimal conditions to obtain a single
YVO4 tetragonal phase dopedwith different Nd

3+ concentrations
by adapting the non-hydrolytic sol–gel route.

Experimental

Preparation of the Precursor Chloride Solutions

The matrixes were synthesized from yttrium oxide (Y2O3,
Aldrich, 99.99%), vanadium oxide (V2O5, Aldrich, 99.6%),
and neodymium oxide (Nd2O3, Aldrich, 99.9%). Absolute
ethanol (99.5%) was used as oxygen donor. By using Y2O3,
V2O5, and Nd2O3, the respective chlorides were obtained by
dissolution of these oxides in concentrated hydrochloric acid
at a temperature of approximately 70 °C for 3 h, under stirring.
Absolute ethanol was added until a pH of 5.5 was achieved.
After cooling, more ethanol was added, until a final volume of
25 mL was obtained. The final concentration of the YCl3,
VCl3, and NdCl3 solutions was 0.1 mol.L− 1.

Non-hydrolytic Sol–gel Synthesis of the YVO4:Nd Phosphor

The matrixes were synthesized by the non-hydrolytic sol–gel
method described by Acosta et al. [32] and modified by us
[12]. In a two-neck round-bottom flask, the precursor solution
was prepared by homogenizing a mixture of ethanolic solu-
tions containing YCl3, VCl3, and EuCl3 and 0.7 mol of abso-
lute ethanol at the desired proportion (Table 1). The solution
was left under reflux and argon atmosphere at 110 °C for 4 h.
The condenser was adapted to a thermostatic bath and main-
tained at -2 °C. After reflux, the mixture was cooled and aged
at room temperature for 24 h. The solvent was removed in a
rotary evaporator, under vacuum, and the material was ther-
mally treated at 600, 800, or 1000 °C for 4 h.

Characterization

X-ray diffraction was performed at room temperature on a
Rigaku Geigerflex D/max-c diffractometer operating with
monochromated CuKα radiation (λ = 1.54Ǻ). The
diffractograms were recorded in the 2θ range from 10–80° at a
resolution of 0.05°. Raman spectroscopy was conducted on a
micro-Raman Jobin Yvon Horiba Spex spectrometer. The spec-
tra were recorded from 100 to 1,200 cm− 1, in two cycles. The
samples were excited with a He-Ne laser at 632.8 nm. The

photoluminescence data were obtained at room temperature, un-
der continuous Xe lamp (450W) excitation in a Horiba Jobin
Yvon Fluorolog-3 spectrofluorimeter equipped with an excita-
tion and emission double monochromator and an R 928
Hammatsu photomultiplier. Emission was collected at 90° from
the excitation beam. The slits were placed at 2.0 and 0.5 nm for
excitation and emission, respectively; the bandpass was 0.2 nm,
and the integration time was 0.5 ms. An emission filter was
employed (transmittance 100% for λ > 830 nm). All the analyses
were carried out at room temperature.

Results and Discussion

First, we evaluated how the annealing temperature and the Y3+

and V5+ concentrations affected the structural properties and
determined the emergence of a pure YVO4 tetragonal phase.
For this study, the Nd3+ concentration was 1.0% in mol.

Figure 1 shows the X-ray diffractogram patterns of the
samples annealed at 600, 800, or 1000 °C. All of them pre-
sented the characteristic peaks of the YVO4 tetragonal phase
(JCPDS 16–250) with spatial group I41 / a m d (D4h) and
crystal lattice parameters a = b = 7.123 and c = 6.291. The
three main peaks at 2θ = 25.0, 33.5, and 49.7° corresponded
to the Miller indices (200), (112), and (312), respectively. The
sample containing the highest Y3+ concentration (YVO-a-1)
displayed not only the peaks attributed to the YVO4 phase, but
also peaks related to the undesired Y2O5 cubic phase (JCPDS
41-1105). As for the samples prepared with smaller Y3+

amounts (YVO-c-1 and YVO-d-1), the extra peaks were as-
cribed to the V2O5 orthorhombic phase (JCPDS 41-1426).
YVO-b-1 was the only sample that showed peaks that were
exclusively related to the YVO4 tetragonal phase, indicating
that the Y/V molar ratio of 0.678 was the optimal ratio to
obtain the pure YVO4 tetragonal phase.

For all the samples, we estimated the average crystallite
size from the X-ray peak width by using Scherrer’s formula
(Dsc = 0.9 λ / β cosθ, where λ is the wavelength of the Cu Kα

radiation (1.5406 Ǻ), θ is the diffraction angle of the most

Table 1 Nominal composition of the prepared samples

Sample VCl3
(mol%)

YCl3
(mol%)

NdCl3
(mol%)

Y/V
(molar ratio)

Re*/V
(molar ratio)

YVO-a-1 50.0 49.0 1.0 0.980 1.00

YVO-b-1 59.0 40.0 1.0 0.678 0.695

YVO-c-1 62.5 36.5 1.0 0.584 0.600

YVO-d-1 75.0 24.0 1.0 0.320 0.333

YVO-b-3 59.0 38.0 3.0 0.644 0.695

YVO-b-5 59.0 36.0 5.0 0.610 0.695

YVO-b-10 59.0 31.0 10.0 0.525 0.695

*Re = Rare-earth elements
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intense peak, and β is the full width at half maximum of the
Bragg peaks) [10, 34]. Table 2 lists the corresponding values.
In the case of sample YVO-a-1, the mean crystallite size was
23 nm regardless of the annealing temperature. However, this
sample presented the smallest crystallite size when compared
to the samples containing higher Y3+ concentrations. This fact
can be ascribed to the difference in the ionic radii of V5+

(0.335 Ǻ) and Y3+ (0.892 Ǻ) and to the limiting Y3+ concen-
tration, which indicated that the low Y3+ amount inhibited
crystallite growth along the process [35, 36].

As for the other samples (YVO-b-1, YVO-c-1, and
YVO-d-1), the crystallite size values increased for the
samples annealed above 800 °C. Nevertheless, the Y3+

concentration did not affect the crystallite size values of
these samples significantly. Other works have reported
similar results. For instance, Matos et al. [37] reported

crystal size of 50 nm for YVO4:Eu
3+ phosphors annealed

a 1000 °C. Another work showed that crystallite size
depended on the doping ion (Eu3+ or Bi3+) concentration
[2]. In our previous works, we reported that annealing
temperature, precursors, and catalysts influenced the
structural and luminescent properties of YVO4:Eu

3+ pre-
pared by the conventional sol–gel route. The crystallite
sizes were estimated to range from 6 to 55 nm, with par-
ticle sizes ranging from 25 up to 50 nm depending on the
parameters that were used in the synthesis [10, 12].

Once the X-ray diffraction results of sample YVO-b-1
demonstrated that the pure YVO4 tetragonal phase was
formed, we investigated the effects of the Nd3+ concentration
and annealing temperature, aiming to obtain better lumines-
cence properties such as higher infrared emission intensity,
longer lifetime, and wide excitation spectrum range, without
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Fig. 1 X-ray diffractogram patterns of the prepared samples: a IVO-a-1, bYVO-b-1, cYVO-c-1, and dYVO-d-1. The markers represent the crystalline
phases of Y2O5 (star) and V2O5 (circle)

Table 2 Average crystallite size of the samples

YVO-a-1 YVO-b-1 YVO-c-1 YVO-d-1

600 °C 800 °C 1000 °C 600 °C 800 °C 1000 °C 600 °C 800 °C 1000 °C 600 °C 800 °C 1000 °C

Dsc (nm) 23 20 23 23 46 46 23 46 46 27 46 46
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structural changes. Figure 2 depicts the X-ray diffractograms
patterns of sample YVO-b-1 annealed at 600, 800, or 1000 °C
and containing 1.0, 3.0, 5.0, or 10.0% in mol of Nd3+. As
observed in Fig. 1, all the samples presented the characteristic
peaks of the YVO4 tetragonal phase (JCPDS 16–250).
Concerning the samples YVO-b-3, YVO-b-5, and YVO-b-
10 calcined at 600 °C, we detected peaks ascribed to the
V2O5 orthorhombic phase (JCPDS 41-1426). However, this
undesired phase did not emerge in the samples calcined at
higher temperatures. In addition, the samples containing 3.0,
5.0, and 10.0% in mol of Nd3+ had the main peaks displaced
probably because of the difference between the ionic radii of
Nd3+ (0.995 Å) and Y3+ (0.892 Å), which distorted the unit
cell of the YVO4 tetragonal phase. [36, 38]. We did not verify
these displacements for YVO-b-1 because it contained a low
Nd3+ concentration.

Raman spectroscopy measurements helped to confirm
changes in the YVO4 structure as a function of Nd

3+ concen-
tration. All the samples presented intense bands, which im-
plied strong interactions between the ions that arose mainly
from the stretching and bending of the shorter metal–oxygen

bonds within the anionic groups [39]. Table 1, in supplemen-
tary information, lists the Raman vibrational mode values for
the samples YVO-b-1, YVO-b-3, YVO-b-5, and YVO-b-10,
calcined at different temperatures.

For the samples calcined at 600 °C, the bands at 280, 402,
and 690 cm− 1 referred to the formation of the yttrium oxide
and oxychloride phases. These bands disappeared, giving rise
to the simple YVO4 phase, as proven by X-ray diffraction
[40]. Thus, YVO4 possibly originated above 600 °C via
solid-state reaction between yttrium oxychloride and V2O5.
The band around 994 cm− 1 is associated with V2O5 vibrations
[41] and was observed for samples containing 5 and 10% in
mol of Nd3+ and calcined at 600 °C. This fact indicated that
YVO4 formation involved V2O5 formation, which was also
observed in the X-ray diffractograms.

Depending on the difference between the ionic radii of the
replacing and the replaced ions, doping ions may cause crystal
lattice expansion or contraction, which is reflected in the
Raman band displacements [40, 42, 43]. In this work, Y3+

replacement with Nd3+ increased the crystal lattice, as proven
by the broadening and shifting of the Raman bands [44]. The
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Fig. 2 X-ray diffractograms patterns of the prepared samples: a IVO-b-1, b YVO-b-3, c YVO-b-5, and d YVO-b-10. The crystalline phase of V2O5 is
represented by the circle symbols
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literature has attributed these facts to defects caused by the
larger ionic radius of the doping Nd3+ as a function of con-
centration [45–47].

The full width at half maximum (FWHM) band of the sam-
ples YVO-b-1 and YVO-b-3, containing 1 and 3% in mol of
Nd3+, respectively, decreased as a function of the heat-
treatment temperature, which was ascribed to the increase in
YVO4 matrix crystallinity. For these samples, we did not verify
any influence of the doping ion concentration due to its small
amount. As for the samples containing 5 and 10% mol of Nd3+,
the bands at 808, 822, and 882 cm− 1, corresponding to VO4

deformation, asymmetric mode, and symmetric stretching, re-
spectively, were approximately 30% broader than the samples
containing 1 and 3%mol of Nd3+, which attested to the distortion
in the YVO4 matrix reticulum [43].

We accomplished photoluminescence measurements
only for the samples calcined at 1000 °C because they
presented more interesting properties, as observed by the
X-ray diffraction and RAMAN spectroscopy results.
Figure 3 illustrates the excitation spectra of the Nd3+ ion
doped into the YVO4 matrix, at different concentrations.
Table 3 summarizes the maximum values of the observed
bands and their transitions.

The excitation spectra presented a broad band around
320 nm, which was assigned to the V5+– O2− charge transfer
band (CTB) of VO4

3−. According to the molecular orbital
theory, this band is associated with transitions from the 1A2

(1T1) ground state to the
1A1 (

1D) and 1B1 (
1D) excited states

of the VO4
3− [48]. Energy transfer occurred more easily be-

tween the VO4
3− group and Nd3+ due to the different ionic

radii of V5+ (0.355 Å) and Nd3+ (0.995 Å) [11]. The CTB can
be used to measure the covalent character of the Ln3+-ligand
bond [12, 49]. The higher the energy of the CTB, the higher
the Ln3+-ligand interaction. The CTB shifts to higher

wavelength due to lattice distortion. Increasing concentration
of Nd3+ distorted the D2d symmetry caused by the larger ionic
radius of Nd3+ as compared to Y3+ [50].

The maximums values were 325 nm for the samples con-
taining 1 and 3% mol of Nd3+ and 317 nm for the samples
containing 5 and 10% mol of Nd3+. This shift indicated a
distorted site symmetry for Nd3+, as previously reported
[10–12]. Furthermore, the Nd3+ concentration impacted the
CTB intensity. Therefore, the decreasing ratios between
CTB and the hypersensitive bands at 520 nm (4I9/2 →

2K13/

2;
4G9/2) and 590 nm (4I9/2→

2G7/2;
4G5/2) [51] also suggested

distortions in the Nd3+ symmetry site. The calculated CTB/
520 nm ratios were 49.7, 20.3, 8.0, and 7.1, whereas the cal-
culated CTB/590 nm ratios were 14.0, 4.1, 3.3, and 1.8 for the
samples containing 1, 3, 5, and 10% mol of Nd3+,
respectively.

Figure 4 contains the emission spectra of the Nd3+-doped
samples excited at different wavelengths (ultraviolet, visible,
and infrared regions). Regardless of the excitation wave-
length, all the samples presented infrared emission bands at
1064 and 1340 nm, which were ascribed to the 4F3/2 →

4I11/2
and 4F3/2 →

4I13/2 transitions of Nd
3+, respectively. The Nd3+

concentration shifted the 4F3/2 → 4I11/2 transition slightly
[10–12]. For samples YVO-b-1 and YVO-b-3, the maximum
intensity emerged at 1067 nm, whereas for the samples YVO-
b-5 and YVO-b-10, the maximum intensity appeared at 1065
and 1064 nm, respectively. Lanthanide ions (Ln3+) can replace
Y3+ in the YVO4 structure, to occupy D2d symmetry sites.
However, the band displacements could also be ascribed to
the Nd3+ symmetry distortion to D2 and C2v due to its larger
ionic radius [50].

Sample YVO-b-3 presented the most intense emission
bands, which suggested that 3.0% mol of Nd3+ was the opti-
mal concentration, as confirmed in Fig. 4.
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Figure 5 shows the intensity values of the Nd3+ emission
bands related to the 4F3/2 →

4I11/2 and
4F3/2 →

4I13/2 transi-
tions at 1064 and 1344 nm, respectively. Increasing Nd3+

concentration above 3.0% mol decreased both infrared emis-
sion bands.We also observed this behavior when we analyzed
the radiative lifetime (τrad) values regardless of the wave-
length excitations, as shown in Table 4. However, sample
YVO-b-3 sample presented a very high emission band at
1064 nm (which matches the II-BW) when it was excited at
808 nm (which corresponds to the I-BW). Besides that, the

radiative lifetime was much higher as compared to other ex-
citation wavelengths.

As mentioned above, the transparency regions of the bio-
logical window (BW) can be divided into three parts: I-BW,
from 750 to 950 nm; II-BW, from 1000 to 1350 nm; and III-
BW, from 1500 to 1800 nm. On the basis of the images only,
I-BW may suffer interference from the autofluorescence of
tissues, but, as excitation source, it is better suited for biomed-
ical applications than ultraviolet (UV) light because it pene-
trates deeper into tissues and causes less photodamage to
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Table 3 Transitions of the bands
observed in the excitation spectra
illustrated in Fig. 3 and their
wavelengths and energy values

Wavelength (nm) Energy (cm− 1) Transitions

320 31,250 Charge transfer band

354 28,248 4I9/2 →
4D3/2;

4D5/2;
4D1/2

431 23,200 4I9/2 →
2D5/2;

2P1/2
469 21,321 4I9/2 →

2K15/2;
4G11/2;

2G9/2;
2(D,P)3/2

520 and 528 19,342 and 18,939 4I9/2 →
2K13/2;

4G9/2;
4G7/2

590 16,949 4I9/2 →
2G7/2;

4G5/2

679 14,727 4I9/2 →
4F9/2

749 13,351 4I9/2 →
4S3/2;

4F7/2
804 e 831 12,437 and 12,033 4I9/2 →

2H9/2;
4F5/2

875 11,428 4I9/2 →
4F3/2
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biological systems. On the other hand, II-BW and III-BW are
suitable for NIR images in large tissue depths [16–25]. Thus,
the ideal luminescent biolabeling should be excited in the I-
BW and emit light in the II-BW or III-BW regions [19].
Figure 6 shows the luminescence spectra of the YVO-b-3
sample emphasizing the I-BW and II-BW regions.

The five bands fit the biological windows, with maximum
at 804 and 872 nm with FWHM of 12 and 9 nm, respectively,
for I-BW. As for II-BW, the maximum bands values were

1067, 1088, and 1344 nm with FWHM of 6, 9, and 6 nm,
respectively, confirming the potential application of this phos-
phor in medical imaging and diagnoses [16–25].

Conclusion

The non-hydrolytic sol–gel methodology has been used to
prepare diverse oxide-based matrixes under mild conditions,
doped with dopants at different levels. In this work, the Y3+/
V5+ molar ratio and the annealing temperature proved to be
important parameters to obtain the YVO4 tetragonal phase,
directly affecting purity and crystallite size.

We also investigated how the Nd3+ concentration affected
the luminescent properties of the prepared phosphor. In addi-
tion to excitation bands in the visible region, all the samples
presented luminescence bands around 750–950 and 1000–
1350 nm, which fit the first and second biological windows,
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Fig. 6 Excitation (a) and emission (b) spectra of sample YVO-b-3 em-
phasizing the I-BW and II-BW regions

Table 4 Radiative lifetime (λem: 1064 nm) under different excitation
wavelengths

Samples τrad (µs)
(λexc = 320 nm)

τrad (µs)
(λexc = 590 nm)

τrad (µs)
(λexc = 808 nm)

YVO-b-1 12.85 ± 1.29 10.64 ± 1.06 3.49 ± 0.35

YVO-b-3 12.26 ± 1.23 12.69 ± 1.27 11.18 ± 1.12

YVO-b-5 11.96 ± 1.20 10.31 ± 1.03 6.84 ± 0.68

YVO-b-10 10.54 ± 1.05 9.72 ± 0.97 1.10 ± 0.11
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Fig. 5 Nd3+ emission intensity values (a) 4F3/2 →
4I11/2 (1064 nm) and

(b) 4F3/2 → 4I13/2 (1340 nm), obtained under different excitation
wavelengths
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respectively. According to the results, the Y3+/V5+ molar ratio
of 0.678, doping with 3.0% mol of Nd3+, and annealing at
1000 °C was the optimal composition to obtain pure Y3+/
V5+ tetragonal phase with high luminescence intensity and
longer radiative lifetime in the NIR range.
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