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ABSTRACT: We achieved optical resolution of 4,7,12,15-
tetrasubstituted [2.2]paracyclophane and subsequent
transformation to planar chiral building blocks. An
optically active propeller-shaped macrocyclic compound
containing a planar chiral cyclophane core was synthesized,
showing excellent chiroptical properties such as high
fluorescence quantum efficiency and a large circularly
polarized luminescence dissymmetry factor.

Planar chiral [2.2]paracyclophanes provide a conformation-
ally stable chiral environment due to suppression of the

rotation of phenylenes.1 Optical resolutions of various
[2.2]paracyclophanes have been conducted,1−3 and the
resulting optically active [2.2]paracyclophane compounds
have mainly been used as chiral auxiliaries. For example, aryl-
PHANEPHOS3a,b are well-known commercially available
compounds; they are widely used as chiral ligands for transition
metal-catalyzed asymmetric reactions.
We have previously studied the planar chirality of [2.2]-

paracyclophane and developed a practical optical resolution
method for pseudo-ortho-disubstituted [2.2]paracyclophanes to
be used as a chiral building block for through-space conjugated
compounds.3i,4 There have been several reports on optical
resolution of disubstituted [2.2]paracyclophane;3 however, only
one report on that of a tetrasubstituted [2.2]paracyclophane
compound exists.5 Considering the potential applications of
[2.2]paracyclophane skeletons in polymer and materials
chemistry,6 as well as organic and organometallic chemistry,
further development and modification of optical resolution
methods for planar chiral tetrasubstituted [2.2]paracyclophanes
would be valuable. Herein, we report optical resolution of rac-
4,7,12,15-tetrabromo[2.2]paracyclophane and subsequent
transformations to produce planar chiral building blocks for
through-space carbon-rich compounds.7 In this study, an
optically active macrocycle8 based on a tetrasubstituted
[2.2]paracyclophane was synthesized. The excellent chiroptical
properties, in particular, circularly polarized luminescence
(CPL), are also reported.
Optical resolution of tetrasubstituted [2.2]paracyclophane

was carried out by a diastereomer method beginning with
4,7,12,15-tetrabromo[2.2]paracyclophane9 rac-1, as shown in
Figure 1. One of bromides in rac-1 was converted to a hydroxyl
group to obtain rac-2 in 69% isolated yield,3c−e which was
reacted with (−)-(1S,4R)-camphanoyl chloride 3 to obtain a
mixture of diastereomers. These were readily separated by SiO2

column chromatography and purified by recrystallization to
obtain (Sp,1S,4R)-4 and (Rp,1S,4R)-4 in 38% and 34% isolated
yield, respectively (each diastereomer ratio (dr) > 99.5%).10

The structures were confirmed by NMR spectroscopy, mass
analysis, elemental analysis, and X-ray crystallography (Figure
1).
Hydrolysis and subsequent transformation of (Sp,1S,4R)-4

are shown in Scheme 1. Treatment of (Sp,1S,4R)-4 with KOH
afforded (Sp)-2. This compound was used for the next
transformation to OTf without purification, and enantiopure
(Sp)-5 was obtained in 92% isolated yield. Sonogashira-
Hagihara coupling11 of (Sp)-5 with trimethylsilylacetylene
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Figure 1. Optical resolution of rac-1. Crystal structures of (Sp,1S,4R)-4
and (Rp,1S,4R)-4 with ellipsoids at 30% probability. Hydrogen atoms
and solvent (CHCl3 in (Rp,1S,4R)-4) are omitted for clarity.
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using a Pd2(dba)3/(t-Bu)3P catalysis gave only (Sp)-6 in 83%
isolated yield. Interestingly, bromide was selectively reacted,
and tetra(trimethylsilylethynyl)[2.2]paracyclophane (Sp)-7 was
not detected by thin-layer chromatography. Reacting (Sp)-6
with trimethylsilylacetylene using a PdCl2(dppf) catalysis
afforded (Sp)-7. Removal of the trimethylsilyl group was
carried out with K2CO3/MeOH afforded the corresponding
tetrayne12 (Sp)-8 in 91% isolated yield. The enantiomer (Rp)-8
was also synthesized by the same route.
Tetrasubstituted [2.2]paracyclophanes 5 and 8 can be

employed as conformationally stable chiral building blocks for
various optically active carbon-rich compounds. In this study,
we synthesized an optically active propeller-shaped macro-
cycle14 from 8, as shown in Scheme 1. The reaction of (Sp)-8
with 5-tert-butyl-2-[(trimethylsilyl)ethynyl]iodobenzene af-
forded the corresponding optically active compound (Sp)-9 in
89% isolated yield. Desilylation of (Sp)-9 with K2CO3/MeOH
and a subsequent oxidative coupling reaction using Cu(OAc)2
gave the target macrocycle (Sp)-10 in 40% isolated yield.
Enantiomer (Rp)-10 was also prepared, and their structures
were confirmed by NMR spectroscopy and mass analysis. A
single crystal of rac-10 was obtained by recrystallization with
CHCl3 and MeOH, and the molecular structure is shown in
Figure S20 (Supporting Information). The enantiomers co-

crystallized into a single crystal, and the bowtie-shaped13

structure was confirmed from the top view. As shown in the
front and side views, the structure seems like a two-blade
propeller owing to the planar chiral [2.2]paracyclophane core.
This structure has previously been synthesized by Hopf, Haley,
and co-workers as a racemic compound,14 although the
positions of the tert-butyl groups were different.
The optical properties of (Rp)- and (Sp)-10 were

investigated; the UV−vis absorption, circularly dichroism
(CD), photoluminescence (PL), and CPL spectra of (Rp)-
and (Sp)-10 in dilute CHCl3 solution (1.0 × 10−5 M) are
shown in Figure 2. The UV−vis absorption spectrum of 10

(Figure 2A) was identical to that of the cyclic compound
prepared by Hopf, Haley, and co-workers.14 Thus, there was no
difference in the electronic structure of the ground state
between these compounds regardless of the positions of the
tert-butyl groups.15 In the CD spectra of (Rp)- and (Sp)-10,
intense and mirror image Cotton effects were observed in the
absorption bands of the UV−vis spectra (Figure 2A). The
molar ellipticity ([θ]) was very large, with a [θ] for (Sp)-10 of
2.7 × 106 deg cm2 dmol−1. The dissymmetry factor of
absorbance, gabs = 2(Δε/ε), is another parameter indicating
chirality in the ground state; a large gabs value of 0.9 × 10−2 was
obtained. The specific rotation [α]D

23 (c 0.5, CHCl3) of (Sp)-10
was estimated to be −1494.9, whereas that of (Sp)-9 was +44.1.

Scheme 1. Synthesis of Optically Active Macrocycle

Figure 2. (A) UV−vis absorption and CD spectra of (Rp)- and (Sp)-10
in CHCl3 (1.0 × 10−5 M) at room temperature. (B) PL and CPL
spectra of (Rp)- and (Sp)-10 in CHCl3 (1.0 × 10−6 M for PL and 1.0 ×
10−5 for CPL) at room temperature, excited at 314 nm.
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In all cases, the chiroptical data for (Sp)-10 were considerably
enhanced compared with those for (Sp)-9 in the ground state.
As shown in Figure 2B, compound 10 exhibited a vibronic

emission peak at around 460 nm with an absolute PL quantum
efficiency (Φlum) of 0.45 for (Sp)-10. The PL decay curve was
fitted with a single exponential relationship (χ2 = 1.18), and the
PL lifetime (τ) was calculated to be 3.71 ns (Figure S41). This
efficient PL arose from criss-cross delocalization across the
entire molecule via the strong through-space interaction of the
[2.2]paracyclophane core.16

Intense and mirror image CPL signals for (Rp)- and (Sp)-10
were observed in the emission region (Figure 2B) with a large
CPL dissymmetry factor, glum = 2(Ileft − Iright)/(Ileft + Iright),
where Ileft and Iright are the PL intensities of left and right CPL,
respectively. The maximum |glum| value was estimated to be 1.1
× 10−2 (Figure S40). It is rare that a monodispersed chiral
hydrocarbon exhibits such a large glum on the order of
10−2.17d,f,g Recently, small molecules that exhibit CPL in dilute
solution have been extensively studied; helically and axially
chiral compounds have been known to have CPL with large glum
values on the order of 10−3−10−2.17 A conformationally stable
chiral structure of the emitting species, such as a helical
structure, in the excited state is essential to obtain CPL with a
large glum. Macrocycle 10 possesses a conformationally stable
chiral second-ordered structure (propeller-shaped structure)
due to complete fixation by the [2.2]paracyclophane bridge
methylenes, resulting in intense CPL with a large glum.

18 There
were only small differences between the gabs and glum for (Rp)-
and (Sp)-10, indicating little conformational change between
the ground and the excited states.19

In conclusion, we have developed a practical method for
optical resolution of planar chiral tetrasubstituted [2.2]-
paracyclophane. The obtained enantiopure 4,7,12,15-tetrafunc-
tional cyclophane was readily modified to the corresponding
planar chiral compounds. In the present study, a propeller-
shaped macrocyclic compound was synthesized through
coupling reactions. The obtained macrocycle exhibited a chiral
environment in the ground and excited state. In particular, the
macrocycle exhibited PL with a high Φlum of 0.45 and CPL with
a large glum of 1.1 × 10−2. A conformationally stable higher-
ordered structure in the excited state is required for CPL with a
large glum, and the theoretical supports in the excited state will
be the next target. From the conformational viewpoint,
[2.2]paracyclophane is the ideal scaffold and provides new
design guidelines for CPL materials in addition to helically and
axially chiral compounds. Various functionalizations of planar
chiral tetrasubstituted [2.2]paracyclophanes, such as 5 and 8,
are available to obtain a variety of optically active emissive
molecules. Therefore, further investigations of [2.2]-
paracyclophane-based CPL compounds and assemblies that
enhance both Φlum and glum are currently underway.
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