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ABSTRACT: A simple, efficient, and environmentally benevolent regioselective oxidative cleavage of 1-arylbutadienes to
cinnamaldehydes mediated by iron(III) sulfate/O2 has been developed. The reaction offered good yields and excellent
regioselectivity and showed good functional group tolerance (31 examples). The method is important, as few reports with
limited substrate scope are available for such excellent oxidative cleavage of conjugated dienes.

Oxidative cleavage of double bonds through ozonolysis is
perhaps the most common method in synthetic

laboratories and as well on industrial scale.1 However, it has
inherent demerits being explosive and requiring special
handling procedures.2 Methods for oxidative cleavage of single
double bond in a substrate are available.3 However, there are
few reports with limited examples for regioselective cleavage of
dienes.4 Neumann and co-workers developed [cis-Ru(II)-
(dmp)2(H2O)2](PF6)2

5 along with H2O2 (10−15 equiv) for
cleavage of nonconjugated dienes with selectivity toward
terminal/primary alkenes.4a Alternatively, the method of
Gebbink et al.4c using [Fe(OTf)2(mix-BPBP)] along with
H2O2 (1.5 equiv) and NaIO4 (1.5 equiv) showed preference
for cleavage of electron-rich and internal double bonds. Liu et
al.4b used the MnCl-tetrakis(4-hydroxyphenyl)porphyrin-poly-
(ethylene glycol) complex along with NaIO4 (1.5−7 equiv) for
oxidative cleavage of monoalkenes, with limonene as the only
diene example for selective internal double bond cleavage.
A few reports with limited examples for aryl-butadiene

cleavage have appeared in the literature.6 Aronovitch and
Mazur6a reported the oxidative cleavage of 1a and 2a (only two
diene examples) absorbed on inorganic supports with light and
oxygen (Scheme 1A). The 9,10-dicyanoanthracene (DCA)
sensitized photooxidation of 1,4-diphenylbutadiene 2a (only
diene example) in mixed surfactant vesicles was investigated by
Tung and co-workers6b to give benzaldehyde and cinnamalde-
hyde (Scheme 1B). At the same time, Grossi and co-workers6c

reported the peroxynitrous acid mediated nonselective
cleavage of 2a to give cinnamaldehyde (10%) along with the
1,2-diol (15%), 1,2-adduct (10%), and 1,4-adduct (65%) being
formed (Scheme 1C). A recent report by Xiong et al.6d

disclosed the conversion of various styrenes to α-azido
acetophenones using TMS-N3 and Cu(OTf)2/O2. In this
work, 1a (only example) under the latter conditions provided

benzaldehyde (25%) and cinnamaldehyde (32%) by a
nonselective olefin cleavage (Scheme 1D). While there exists
a good number of methods for oxidative cleavage of styrene-
type compounds to benzaldehydes,7 the corresponding
regioselective oxidative cleavage of 1-arylbutadienes to
cinnamaldehydes is underdeveloped, with limited substrate
scope. Cinnamaldehydes are important compounds in
explorative research as starting materials8 as well as
commercially in the food, cosmetic, flavor, and fragrance
industries9 and medicinally for antifungal,10 antibacterial/
antibiotic,11 and antitermitic activities.12 Due to low toxicity,
these are also used as fungicides and pesticides.13 While
cinnamaldehydes are prepared by different methods,14 a recent
paper used allyl benzenes in oxidation with DDQ to prepare
cinnamaldehydes,15 although similar procedures with allyl/
alkyl benzene were reported earlier.16 An alternative method
selectively cleaving the terminal double bond of 1-arylbuta-
dienes to cinnamaldehydes (and not benzaldehydes), without
overoxidation to cinnamic acid or benzoic acid, with a wider
substrate scope would be highly desirable.
Our work was a serendipitous discovery. We recently

reported efficient alternative methods for Wacker oxidation of
aliphatic terminal olefins and styrenes using Fe2(SO4)3·nH2O
or DMP as terminal oxidants along with an appropriate Pd-
catalyst17 (Scheme 1E). In an attempt to oxidize (E)-1-(4-
Methoxyphenyl)butadiene 1b under our Fe2(SO4)3.nH2O/
PdCl2 conditions17a to styryl methyl ketone (Wacker
oxidation), we observed the formation of 4-methoxycinnamal-
dehyde 3b exclusively (Scheme 1F). The reaction in the
absence of PdCl2 catalyst also delivered the same results. We
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planned to explore this chemistry for efficient cleavage of the
terminal olefin bond of 1-arylbutadienes to cinnamaldehydes.
The reaction also offers scope for the synthesis of drug
molecules and valuable compounds.9−13,18,19 The 1-arylbuta-
diene unit could be looked upon as a latent functionality to be
unveiled as cinnamaldehyde in a multistep synthesis.
We screened various iron salts, different solvents, and

temperature for the oxidative cleavage of 1-(4-methoxyl-
phenyl)butadiene 1b as a model substrate (see Table S1, in
Supporting Information for details). This study revealed that
Fe2(SO4)3·nH2O (1.5 equiv) in CH3CN/H2O (7:1) at 45 °C
under an oxygen atmosphere (balloon) was optimal. The scope
and limitations of this method were next investigated on a
series of substituted 1-arylbutadienes 1 (Scheme 2). Substrates
with OMe, alkyl, or Ph substituents 1a−h delivered the
corresponding cinnamaldehydes 3a−h in good to excellent
yields (85−94%). 1-(Naphthalen-1-yl)butadiene 1i furnished
3i in 82% yield. Halogenated substrates 1j−o also worked well
in giving the corresponding cinnamaldehydes 3j−o in good
yields (72−81%). Substrates with electron-withdrawing groups
like NO2 (1p) provided the cinnamaldehydes 3p in 75% yield.
The diethylamine moiety on the arylring compound 1q was
also well tolerated providing the corresponding cinnamalde-
hyde 3q in 74% yield. The phenolic substrate 1r and its
corresponding derivatives like benzyl 1s and acetyl 1t all gave
the cinnamaldehydes 3r−t in good yields (76−84%). These
compounds (3r−t) are bioactive and can also lead to
important 2-hydroxycinnamic acid (2-HCA) derivatives.18,19

A reaction on larger scale, 1b (0.801 g, 5.0 mmol), led to 3b
(0.706 g) in 87% yield, indicating possibility for scale up of the
reaction (Scheme 2).

The oxidative cleavage using Fe2(SO4)3·nH2O/O2 was
extended to substituted 1-arylbutadienes 1u−x and 2a−e to
provide the mono-olefin cleaved products 3 in good to
excellent yields (Scheme 3). The 1,1-diphenylbutadiene 1u
and (E)-1-methyl-1-phenylbutadiene 1v provided β-phenyl-
cinnamaldehyde 3u and β-methylcinnamaldehyde 3v in

Scheme 1. Synthesis of Cinnamaldehydes and Wacker
Oxidation of Styrenes

Scheme 2. Substrate Scope for Oxidative Cleavage of 1-
Arylbutadienes 1a

a1 (0.5 mmol), Fe2(SO4)3·nH2O (1.5 equiv), CH3CN/H2O (4 mL,
7:1) at 45 °C, O2 (balloon), 18−24 h. bFor 3k−m, 3p, and 3q, the
(E/Z)-1k−m, 1p, and 1q were used.

Scheme 3. Oxidative Cleavage of Substituted 1-
Arylbutadienes 1 or 2a

a1 or 2 (0.5 mmol), Fe2(SO4)3·nH2O (1.5 equiv), CH3CN/H2O (7:1,
4 mL), 45 °C, O2 (balloon), 18−48 h.
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excellent yields of 94% and 92%, respectively. 1-(4-Methoxy-
phenyl)-3-methylbutadiene 1w and 1-(3-methoxyphenyl)-3-
methylbutadiene 1x on oxidative cleavage provided the α,β-
unsaturated methyl ketones 3w and 3x in 91% and 88% yields,
respectively. No trace of 4-methoxy- or 3-methoxy-
benzaldehyde was obtained here, even though the two double
bonds were equally substituted. The (E,E)-1,4-diphenyl-
butadiene 2a displayed an excellent monocleavage of butadiene
to provide cinnamaldehyde 3a in 82% yield. Here benzalde-
hyde was obtained as a second product in 56% yield. The
reaction was selective and did not yield only benzaldehyde as
the product by cleavage of both the double bonds. Similarly,
the unsymmetrical (E,E)-1-(4-methoxyphenyl)-4-phenylbuta-
diene 2b on oxidative cleavage provided 4-methoxy-
cinnamaldehyde 3b in 76% yield. Here also we obtained
benzaldehyde in 58% yield with no formation of cinnamalde-
hyde 3a as the second product, displaying selectivity for
cleavage of the C1−C2 double bond. Similarly, the (E,E)-1-(2-
methoxyphenyl)-4-(4-methoxyphenyl)butadiene 2c and (E,Z-
1,4-bis(4-methoxyphenyl)butadiene 2d on oxidative cleavage
provided 2-methoxycinnamaldehyde 3h (41%) and 4-
methoxycinnamaldehyde 3b (52%), respectively, along with
4-methoxybenzaldehyde formed in each case in 32% and 46%
yields, respectively. The 1-(4-chlorophenyl)-4-phenylbutadiene
2e was sluggish in reaction and partly decomposed providing
cinnamaldehyde 3a in 20% yield along with 4-chlorobenzalde-
hyde isolated in 12% yield.
The present oxidative cleavage method was employed in the

synthesis of bioactive substituted sinapaldehydes20 and the
trienone curcuminoids21 as shown in Scheme 4. Alkylation of
phenol 6 provided the benzyl ether 7a or allyl ether 7b, which
on olefination gave the dienes 8a and 8b, respectively. The
oxidative cleavage of these dienes furnished the sinapaldehyde

derivatives 9a and 9b in 91% and 88% yields, respectively.
Remarkably the allyl double bond in 9b was intact. The
aldehydes 3b and 3g (obtained by oxidative cleavage of dienes
1b and 1g) (Scheme 2) on aldol condensation with
methylstyryl ketones 3w and 3x (obtained from 1w and 1x)
gave the trienones 10a and 10b in 92% and 88% yields,
respectively. These have been studied as anticancer com-
pounds.21

To gain insight in the mechanism, we investigated the
reaction of 1b in the presence of TEMPO and BHT, which are
generally used to trap radical intermediates (Scheme 5). In

either case product 3b was not observed. TEMPO (1.5 equiv)
led to the adduct 11 (67%), whose structure was further
confirmed by oxidation to the keto compound 15 indicating a
terminal TEMPO adduct.22 Further, the hydrolysis of 11 with
Zn/AcOH gave terminal diol 16, which under the optimized
oxidative conditions did not provide 3b. Thus, a diol
intermediate is ruled out in this oxidative cleavage. With
BHT, a trace amount of the adduct 12 was detected by HRMS.
This indicated that the reaction to be proceeding via radical
intermediates formed by electron transfer by iron(III). Hence
the radical 14 initially formed undergoes oxygen addition to
give the terminal dioxetane 17.3h,23 Morpholine was used to
trap the dioxetane moiety as reported in literature.24 This
reaction led to the formation of the product 3b in 89% yield. In
this reaction a trace amount of morpholine adduct 13 was
detected by LRMS. Thus, dioxetane 17 formation is evident,
which then leads to cleavage by reverse opening leading to the
formation of observed cinnamaldehyde product 3b.
In summary, in this paper we have developed an efficient

Fe(III)/O2-mediated regioselective oxidative cleavage of the

Scheme 4. Synthetic Application of Oxidative Cleavage of 1-
Arylbutadienes

Scheme 5. Control Experiments and Plausible Mechanism
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terminal double bond of 1-arylbutadienes to various
cinnamaldehydes in good to excellent yields. The method
can be executed in a simple operation under an oxygen
atmosphere and aqueous media. Thus, the method holds
promise in organic synthesis being environmentally benevolent
and that limited procedures are available for such excellent
oxidative cleavage.4,6
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