Asymmetric Synthesis of Gonioheptolide A Analogues via an Organocatalytic Aldol Reaction as the Key Step

Dieter Enders,* Sarah David, Kristina Deckers, Andreas Greb, Gerhard Raabe

Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany Fax +49(241)8092127; E-mail: enders@rwth-aachen.de *Received: 21.09.2012; Accepted: 24.09.2012*

Abstract: An efficient asymmetric synthesis of the potential antitumor agent (–)-gonioheptolide A derivatives is described. By employing an (*S*)-proline-catalyzed aldol reaction, the RAMP hydrazone α -alkylation methodology, and a diastereoselective reduction with zinc borohydride five stereocenters are established in the target compound. 4-*epi*-Methoxy-gonioheptolide A was obtained in ten steps in 15% overall yield and excellent diastereo- and enantiomeric excesses (de \geq 95%, ee \geq 99%).

Key words: dihydroxyacetone, aldol reaction, organocatalysis, proline, styryllactone

Styryllactones are secondary metabolites isolated from plants of the family annonaceae, genus *goniothalamus*.¹ Since the first isolation of goniothalamin in 1967,² more than 30 styryllactones³ were discovered showing interesting cytotoxic, pesticidal, and antitumor activity.⁴ A characteristic feature of the styryllactones is the presence of mono- or bicyclic tetrahydrofuran ring systems, densely decorated with oxygenated stereocenters.¹

(–)-Gonioheptolide A (1) was first isolated in 1993 from the bark of *Goniothalamus giganteus* by McLaughlin et al.⁵ The initially published structure was revised by McLaughlin and Hanaoka et al. in 1999.⁶ The generally accepted structure of (–)-gonioheptolide A containing the furan alkyl ester skeleton 1 is shown in Figure 1. (–)-Gonioheptolide A shows interesting antitumor activities against lung, breast, and colon cancer cells.⁵

Figure 1 (-)-Gonioheptolide A (1), (-)-goniofupyron (2), and the epimeric methoxy compounds 3 and 4

SYNTHESIS 2012, 44, 3483–3488 Advanced online publication: 09.10.2012 DOI: 10.1055/s-0032-1316803; Art ID: SS-2012-Z0740-OP © Georg Thieme Verlag Stuttgart · New York The first semi-synthesis of 1 was accomplished by McLaughlin et al. starting from (–)-goniofupyron (2), by opening the lactone moiety under acidic conditions to the corresponding methyl ester.⁶

To the best of our knowledge, the only total synthesis of **1** has been published by Hudson et al. in 2007.⁷ Starting from L-(+)-tartaric acid, **1** was synthesized in 18 steps and an overall yield of 3%. The same group synthesized four different stereoisomers of **1**. These isomers showed even higher activity against breast cancer cells in biological studies.⁸

For a new access to this interesting class of compounds we envisaged a different route to synthesize new epimers and derivatives of **1** and **2** (Figure 1). Based on our previous experience in proline-catalyzed aldol reactions,⁹ RAMP-hydrazone alkylations,¹⁰ previous total syntheses of natural products and bioactive compounds starting from dioxanone,¹¹ we hoped that the epimeric gonioheptolide **3** could be prepared from three basic building blocks: commercially available methyl bromoacetate (**5**), 2,2-dimethyl-1,3-dioxan-5-one (**6**, dioxanone),¹² and aldehyde **7** (Scheme 1).

Scheme 1 Retrosynthetic analysis of 4-*epi*-methoxy-gonioheptolide A (3)

The envisaged route to 4-*epi*-methoxy-gonioheptolide A (3) consisted of an organocatalytic aldol reaction followed by diastereoselective RAMP-hydrazone alkylation. Subsequent reduction of the keto group and anionic ring closure should form the furan moiety.

In the first stereogenic step, we employed an (*S*)-prolinecatalyzed aldol reaction of dioxanone (**6**) with the TBSprotected aldehyde **7**, which could be easily synthesized from (*R*)-mandelic acid¹³ (Scheme 2). The aldol product **8** was obtained with very good diastereoselectivity (de = 90%) and the minor diastereomer could be separated by column chromatography giving access to the diastereo- and enantiomerically pure aldol product **8** (de \geq 95%, ee \geq 99%) in very good yield (86%). Subsequent reaction of the free alcohol group with Meerwein's reagent in the presence of proton sponge [1,8-bis(dimethylamino)naphthalene] gave the methyl ether **9** in 83% yield and condensation of the ketone with RAMP resulted in 74% the desired hydrazone **10** in good yield.

proton sponge = 1,8-bis(dimethylamino)naphthalene

Scheme 2 Organocatalytic anti-aldol reaction as a key step

The RAMP-hydrazone α -alkylation methodology¹⁴ was used to give the alkylated product **11** in a two-step sequence consisting of the alkylation of hydrazone **10** with *tert*-butyllithium and methyl bromoacetate (**5**) in THF at -100 °C and a subsequent ozonolysis to remove the chiral auxiliary. The alkylation proceeded with a diastereomeric excess of 94%. Column chromatography yielded the diastereo- and enantiomerically pure alkylation product in a one-pot fashion from **10** to **11** with 66% yield over 2 steps (Scheme 3).

Anti-diastereoselective reduction of ketone 11 with zinc borohydride gave the alcohol 12 in 97% yield (de \geq 95%, ee \geq 99%). In accordance with previous findings it should be noted that other reducing reagents, such as boron hydrides were not selective enough or led to the wrong diastereomer.¹⁵ The cyclization precursor 13 was finally obtained by mesylation of the secondary alcohol under basic conditions (Scheme 4).

Scheme 3 α -Alkylation of 10 with methyl bromoacetate (5) as electrophile

Scheme 4 Anti-diastereoselective reduction with $Zn(BH)_4$ and mesylation

We initially thought that the acidic removal of the protection groups and subsequent treatment with $CaCO_3$ could provide the target compound **3** directly. However, only lactone **14** was obtained in 70% yield. By refluxing **14** in pyridine the cyclization to the bicyclic goniofupyron derivative could be achieved in 82% yield. Finally, in analogy to McLaughlin's synthesis the 4-*epi*-methoxygoniofupyron (**4**) was opened under acidic conditions to the target compound **3** (Scheme 5).

Scheme 5 Final steps in the synthesis of the epimeric goniheptolide analogues 3 and 4

Attempts to convert the methoxy group into the corresponding free secondary alcohol turned out to be difficult. Protocols with different Lewis acids and on different stages were tried without success. Thus, the epimeric natural product 2 could not be obtained via this route. To support our expectations for the stereochemical outcome of the synthesis the absolute configuration of the acyclic ester 15 was determined by X-ray crystal structure analysis. This compound was obtained by deprotection of 13 under methanolic acidic conditions. Additional NOE measurements of 3 confirmed the expected inversion of the stereocenter at C-2 during the cyclization step (Figure 2).

Figure 2 X-ray crystal structure of 15¹⁶ and NOE measurement of 3

In summary, we have developed an asymmetric synthesis of new epimeric (-)-gonioheptolide A analogues using an organocatalytic aldol reaction with (S)-proline as the stereogenic key step. 4-epi-Methoxy-gonioheptolide A was obtained in ten steps in a good overall yield of 15% in diastereo- and enantiopure form starting from the dioxanone (6), aldehyde 7, and methyl bromoacetate (5). Besides this key step an α -alkylation employing the RAMP-hydrazone methodology and an $S_N 2$ ring closure gave us access to the epimeric methoxy-gonioheptolide A (3) and the epimeric methoxy-goniofupyron (4). This synthetic strategy could also lead to different stereoisomers and derivatives of (-)gonioheptolide A (1). Compared to conventional strategies stereoisomers can be accessed by using (S)- or (R)proline in the key step and/or the RAMP- or SAMP-hydrazone for the alkylation, respectively. Furthermore, the reduction of the ketone can be directed to the opposite diastereomer by using L-Selectride as the reducing agent.

All commercially available compounds were used without further purification. (R)-2-[(tert-Butyldimethylsilyl)oxy]-2-phenylacetaldehyde (7) was synthesized following a procedure published by Kobayashi et al.¹³ For preparative column chromatography silica gel 60 (particle size 0.040-0.063 mm, 230-240 mesh, flash) was used. Yields are reported based on pure, separated diastereomers. Melting points were determined with a Büchi Melting Point B-540 and optical rotation values with a Perkin-Elmer P241 polarimeter. TLC was carried out with silica gel 60 F254 plates from Merck and visualization was achieved by staining with vanillin solution in EtOH with 1% concd H₂SO₄. IR spectra were acquired with a PerkinElmer Spectrum 100 spectrophotometer. ¹H and ¹³C NMR spectra were recorded on Varian Mercury 300 or Inova 400 spectrometers with TMS as internal standard. Mass spectra were measured with a Finnigan SSQ7000 spectrometer (CI 100 eV; EI 70 eV). HRMS data were recorded with a ThermoFinnigan LCQ Deca XP plus (ESI) or a ThermoFisher Scientific LTQ-Orbitrap XL (ESI) instrument.

(S)-4-{(1R,2R)-2-[(tert-Butyldimethylsilyl)oxy]-1-hydroxy-2-

phenylethyl}-2,2-dimethyl-1,3-dioxan-5-one (8) To a solution of 2,2-dimethyl-1,3-dioxan-5-one (6; 781 mg, 6.0 mmol) and (R)-2-[(tert-butyldimethylsilyl)oxy]-2-phenylacetaldehyde (7; 500 mg, 2 mmol) in DMSO (8 mL) were added (S)proline (69 mg, 0.3 mmol) and H₂O (180 mg, 10 mmol). The mixture was stirred at r.t. for 3 d, quenched with brine (5 mL), and extracted with Et₂O (3×10 mL). Drying of the combined Et₂O extracts (MgSO₄), evaporation of the solvent, and column chromatography (n-pentane-Et₂O, 15:1 to 6:1) of the crude product afforded **8** as a colorless oil; yield: 655 mg (86%); $[\alpha]_D^{-26}$ -121.3 (*c* = 1.02, CHCl₃); $R_f = 0.3$ (*n*-pentane–EtOAc, 15:1).

IR (capillary): 3517, 3064, 3033, 2987, 2929, 2856, 1748, 1578, 1542, 1466, 1381, 1253, 1225, 1159, 1083, 1007, 938, 860, 838, 778, 702, 673, 635, 562, 537 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): $\delta = -0.24$ (s, 3 H, CH₃Si), 0.06 (s, 3 H, CH₃Si), 0.88 (s, 9 H, t-C₄H₉Si), 1.35 (s, 3 H, CH₃), 1.47 (s, 3 H, CH₃), 3.07 (d, J = 2.3 Hz, 1 H, OH), 3.80 (d, J = 16.6 Hz, 1 H, CH_2^{a}), 3.96 (dd, $J = 16.6, 1.2 Hz, 1 H, CH_2^{b}$), 4.07–4.10 (m, 1 H, H-4), 4.17–4.18 (m, 1 H, H-3), 4.99 (d, J = 7.2 Hz, 1 H, H-5), 7.26– 7.38 (m, 5 H, ArH).

¹³C NMR (75 MHz, CDCl₃): δ = -5.0, -4.4, 18.1, 23.0, 24.8, 25.8 (3 C), 67.0, 74.8, 75.6, 76.4, 100.4, 127.7 (2 C), 128.1 (2 C), 128.2, 140.4, 207.2.

MS (EI, 70 eV): m/z (%) = 59 (20), 72 (11), 73 (73), 75 (68), 91 (21), 105 (13), 115 (12), 117 (16), 129 (62), 131 (12), 159 (22), 193 (62), 194 (10), 221 (100), 222 (20).

HRMS-ESI: m/z [2 M + Na]⁺ calcd for C₄₀H₆₄O₁₀Si₂ + Na: 783.3930; found: 783.3931.

(S)-4-{(1R,2R)-2-[(tert-Butyldimethylsilyl)oxy]-1-methoxy-2phenylethyl}-2,2-dimethyl-1,3-dioxan-5-one (9)

To a solution of 8 (3.61 g, 9.49 mmol) in anhyd CH₂Cl₂ (94 mL) were added Me₃OBF₄ (2.10 g, 14.23 mmol) and proton sponge (5.08 g, 23.72 mmol). The mixture was refluxed under argon for 4 h. After cooling to r.t., the mixture was washed with HCl (1.5 N, 50 mL). The aqueous layer was extracted with Et_2O (2 × 30 mL). The combined organic layers were dried (MgSO₄) and the solvent was evaporated. The resulting solid was suspended in Et2O (200 mL) and filtered over a short plug of silica gel. The filtrate was evaporated and purified by column chromatography (n-pentane-Et₂O, 8:1) to afford 9 as a colorless oil; yield: 3.11 g (83%); $[\alpha]_D^{26}$ $-129.9 (c = 1.02, CHCl_3); R_f = 0.5 (n-pentane-Et_2O, 8:1).$

IR (capillary): 3065, 3034, 2988, 2931, 2893, 2857, 1779, 1751, 1726, 1673, 1467, 1424, 1380, 1315, 1223, 1125, 1089, 1056, 986, 890, 863, 837, 779, 670, 626, 573, 541, 481 cm⁻¹

¹H NMR (300 MHz, CDCl₃): $\delta = -0.18$ (s, 3 H, CH₃Si), 0.06 (s, 3 H, CH₃Si), 0.92 (s, 9 H, t-C₄H₉Si), 1.28 (s, 3 H, CH₃), 1.43 (s, 3 H, CH₃), 3.59 (s, 3 H, OCH₃), 3.61–3.63 (m, 2 H, CH₂), 3.73 (dd, *J* = 8.3, 1.8 Hz, 1 H, H-4), 4.09 (m, 1 H, H-3), 4.97 (d, *J* = 8.3 Hz, 1 H, H-5), 7.24–7.37 (m, 5 H, ArH).

¹³C NMR (75 MHz, CDCl₃): δ = -4.9, -4.8, 18.1, 22.7, 25.0, 25.8 (3 C), 60.9, 66.9, 76.0, 76.7, 87.2, 100.1, 127.9 (2 C), 127.9, 128.4 (2 C), 140.9, 206.8.

MS (EI, 70 eV): m/z (%) = 59 (27), 73 (71), 75 (15), 89 (38), 91 (18), 115 (20), 129 (98), 130 (15), 131 (11), 147 (12), 173 (47), 195 (10), 203 (11), 205 (10), 219 (16), 221 (100), 222 (55), 223 (15), 231 (30), 247 (27), 263 (24), 265 (29), 279 (16), 337 (12), 395 (3, $[M + H]^+$).

HRMS-ESI: m/z [M + Na]⁺ calcd for C₂₁H₃₄O₅Si + Na: 417.2068; found: 417.2068.

(2*R*)-*N*-((*R*)-4-{(1*R*,2*R*)-2-[(*tert*-Butyldimethylsilyl)oxy]-1methoxy-2-phenylethyl}-2,2-dimethyl-1,3-dioxan-5-ylidene)-2-(methoxymethyl)cyclopentanamine (RAMP Hydrazone 10)

To a solution of **9** (1.66 g, 4.20 mmol) and RAMP (2.18 g, 16.79 mmol) in benzene (21 mL) were added 3 Å molecular sieves. The mixture was heated at reflux for 15 h. After filtration of the molecular sieves, the solvent was removed under reduced pressure. Purification of the crude product by column chromatography (*n*-pentane–Et₂O, 4:1) afforded **10** as a yellow oil; yield: 1.58 g (74%); $[\alpha]_D^{23}$ –41.5 (*c* = 1.01, CHCl₃); *R_f*= 0.2 (*n*-pentane–Et₂O, 5:1).

IR (capillary): 3469, 2935, 1460, 1377, 1222, 1086, 933, 841, 760, 701, 669, 625, 572, 517 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): $\delta = -0.16$ (s, 3 H, CH₃Si), 0.05 (s, 3 H, CH₃Si), 0.84 (s, 9 H, *t*-C₄H₉Si), 1.28 (s, 3 H, CH₃), 1.38 (s, 3 H, CH₃), 1.59–1.74 (m, 1 H, RMP-H), 1.78–1.88 (m, 2 H, RMP-H), 1.92–2.03 (m, 1 H, RMP-H), 2.68–2.76 (m, 1 H, NCH₂^a), 2.85–2.92 (m, 1 H, NCH₂^b), 3.07–3.16 (m, 1 H, NCH), 3.23 (dd, J = 7.2, 9.3 Hz, 1 H, MeOCH₂^a), 3.36 (s, 3 H, OCH₃), 3.43 (s, 3 H, OCH₃), 3.48 (dd, J = 4.5, 9.3 Hz, 1 H, MeOCH₂^b), 3.60 (dd, J = 3.5, 6.9 Hz, 1 H, H-4), 4.12 (dd, J = 1.5, 15.8 Hz, 1 H, CH₂^a), 4.25 (dd, J = 1.5, 3.5 Hz, 1 H, H-3), 4.48 (d, J = 15.8 Hz 1 H, CH₂^b), 5.10 (d, J = 6.7 Hz, 1 H, H-5), 7.21–7.25 (m, 3 H, ArH), 7.41–7.45 (m, 2 H, ArH).

¹³C NMR (75 MHz, CDCl₃): $\delta = -4.7$ (2 C), 18.2, 22.7, 23.3, 25.8 (3 C), 26.6, 26.8, 55.4, 59.1, 60.7, 60.9, 66.8, 72.5, 74.6, 75.1, 88.1, 99.2, 127.1, 127.7 (2 C), 127.9 (2 C), 142.6, 159.0.

MS (EI, 70 eV): m/z (%) = 70 (13), 73 (21), 82 (6), 89 (20), 91 (6), 98 (16), 112 (5), 114 (7), 139 (8), 183 (100), 184 (27), 195 (14), 221 (9), 241 (6), 242 (12), 461 (6), 506 (1, [M + H]⁺).

HRMS-ESI: $m/z [M + H]^+$ calcd for $C_{27}H_{47}O_5N_2Si$: 507.3249; found: 507.3247.

Methyl 2-((4*R*,6*S*)-6-{(1*R*,2*R*)-2-[(*tert*-Butyldimethylsilyl)oxy]-1-methoxy-2-phenylethyl}-2,2-dimethyl-5-oxo-1,3-dioxan-4yl)acetate (11)

Under argon 10 (411 mg, 0.81 mmol) was dissolved in anhyd THF (3.2 mL) and cooled to -78 °C. t-BuLi (1.47 M in n-pentane, 0.61 mL, 0.89 mmol) was added dropwise and the mixture was stirred at -78 °C for 2 h. After cooling to -100 °C, methyl bromoacetate (5; 0.13 mL, 0.89 mmol) dissolved in anhyd THF (0.9 mL) was added subsequently. The mixture was stirred for 2 h and warmed to r.t. over 15 h. The reaction was quenched with pH 7 buffer solution (5.0 mL) and extracted with Et_2O (3 × 5 mL). The combined organic layers were dried (MgSO₄) and the solvent was evaporated. The crude product was dissolved in anhyd CH₂Cl₂ (50.0 mL) under argon and cooled to -78 °C. Ozone was bubbled through the solution for 15 min. Excess of ozone was removed by flushing the solution with argon while warming to r.t. The mixture was dried (MgSO₄) and the solvent was removed under vacuum. Purification of the crude product by column chromatography (*n*-pentane-Et₂O, 4:1) afforded **11** as a yellow oil; yield: 251 mg (66%); $[\alpha]_D^{23}$ -11.0 $(c = 1.03, \text{CHCl}_3); R_f = 0.4 (n-\text{pentane}-\text{Et}_2\text{O}, 6:1).$

IR (capillary): 2938, 2857, 1743, 1444, 1380, 1258, 1202, 1170, 1122, 1087, 920, 851, 776, 702 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): $\delta = -0.19$ (s, 3 H, CH₃Si), 0.03 (s, 3 H, CH₃Si), 0.81 (s, 9 H, *t*-C₄H₉Si), 1.42 (s, 3 H, CH₃), 1.50 (s, 3 H, CH₃), 2.32 (dd, J = 16.3, 8.9 Hz, 1 H, CH₂^a), 2.58 (dd, J = 16.3, 3.7 Hz, 1 H, CH₂^b), 3.59 (s, 3 H, OCH₃), 3.65–3.68 (m, 1 H, H-4), 3.70 (s, 3 H, CO₂CH₃), 4.15–4.16 (m, 1 H, H-3), 4.59–4.62 (m, 1 H, CHOH), 5.89 (d, J = 8.2 Hz, 1 H, H-5), 7.24–7.41 (m, 5 H, ArH).

¹³C NMR (75 MHz, CDCl₃): δ = -4.9, -4.8, 18.1, 20.7, 25.7 (3 C), 28.9, 35.7, 52.0, 61.5, 74.5, 75.4, 78.3, 87.7, 98.7, 127.7 (4 C), 128.1, 141.3, 171.1, 205.8.

MS (EI, 70 eV): m/z (%) = 55 (11), 57 (15), 59 (29), 73 (83), 75 (19), 85 (24), 89 (54), 91 (25), 105 (11), 115 (27), 131 (10), 143 (19), 183 (20), 201 (15), 221 (100), 222 (19), 245 (19).

HRMS-ESI: $m/z [M + H]^+$ calcd for $C_{24}H_{39}O_7Si$: 467.2460; found: 467.2460.

Methyl 2-((4*R*,5*R*,6*R*)-6-{(1*R*,2*R*)-2-[(*tert*-Butyldimethylsilyl)oxy]-1-methoxy-2-phenylethyl}-5-hydroxy-2,2-dimethyl-1,3-dioxan-4-yl)acetate (12)

A solution of Zn(BH₄)₂ in dry Et₂O (0.14 M, 50.5 mL, 7.06 mmol) was added dropwise under argon to a solution of **11** (589 mg, 1.26 mmol) in anhyd Et₂O (9.0 mL) at -78 °C. The mixture was slowly warmed to r.t. and stirred for 10 h. After cooling to 0 °C, MeOH (10 mL) was added and the mixture was stirred for additional 30 min. The reaction was quenched with sat. aq NH₄Cl (30 mL) and extracted with CH₂Cl₂ (3 × 30 mL). Drying of the combined CH₂Cl₂ layers (MgSO₄), evaporation of the solvent, and column chromatography (*n*-pentane–Et₂O, 2:1) of the crude product afforded **12** as a colorless oil; yield: 574 mg (97%); $[\alpha]_D^{25}$ -10.1 (*c* = 1.00, CHCl₃); R_f = 0.5 (*n*-pentane–Et₂O 2:1).

IR (capillary): 3502, 2994, 2935, 2858, 1742, 1454, 1381, 1321, 1257, 1201, 1169, 1068, 933, 845, 760, 702 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): $\delta = -0.19$ (s, 3 H, CH₃Si), 0.05 (s, 3 H, CH₃Si), 0.90 (s, 9 H, *t*-C₄H₉Si), 1.28 (s, 3 H, CH₃), 1.36 (s, 3 H, CH₃), 2.40 (dd, J = 3.2, 15.6 Hz, 1 H, CH₂^a), 2.85 (dd, J = 8.9, 15.6 Hz, 1 H, CH₂^b), 3.20 (s, 3 H, OCH₃), 3.24–3.33 (m, 2 H, H-2, H-4), 3.58 (d, J = 1.0 Hz, 1 H, OH), 3.68 (s, 3 H, CO₂CH₃), 3.73 (dd, J = 7.2, 9.2 Hz, 1 H, H-3), 4.10 (dt, J = 3.2, 9.2 Hz, 1 H, CHOH), 4.81 (d, J = 3.5 Hz, 1 H, H-5), 7.24–7.39 (m, 5 H, ArH).

¹³C NMR (75 MHz, CDCl₃): δ = -4.9, -4.4, 18.2, 19.4, 25.9 (3 C), 29.3, 37.7, 51.6, 61.7, 69.3, 70.0, 71.3, 74.5, 90.8, 98.7, 127.2 (2 C), 127.4, 127.9 (2 C), 141.8, 171.8.

MS (EI, 70 eV): *m*/*z* (%) = 59 (19), 73 (31), 89 (15), 113 (10), 115 (11), 145 (16), 185 (27), 221 (100), 222 (20).

HRMS-ESI: m/z [2 M + Na]⁺ calcd for $C_{48}H_{80}O_{14}Si_2$ + Na: 959.4979; found: 959.4959.

Methyl 2-((4*R*,5*R*,6*S*)-6-{(1*R*,2*R*)-2-[(*tert*-butyldimethylsilyl)oxy]-1-methoxy-2-phenylethyl}-2,2-dimethyl-5-[(methylsulfonyl)oxy]-1,3-dioxan-4-yl)acetate (13)

Et₃Ň (0.43 mL, 3.06 mmol) and a catalytic amount of 4-DMAP were added to a solution of **12** (552 mg, 1.18 mmol) in CH₂Cl₂ (12.0 mL). After cooling to 0 °C, a solution of MsCl (0.13 mL, 1.65 mmol) in CH₂Cl₂ (1.0 mL) was added dropwise. The mixture was stirred for 30 min at 0 °C and for 2 h at r.t., then quenched with sat. aq NH₄Cl (10 mL), and extracted with CH₂Cl₂ (3 × 10 mL). Drying of the combined CH₂Cl₂ layers (MgSO₄), evaporation of the solvent, and column chromatography (*n*-pentane–Et₂O, 2:1) of the crude product afforded **13** as a colorless solid, yield: 598 mg (93%); mp 89–91 °C $[\alpha]_D^{24}$ –12.0 (*c* = 0.75, CHCl₃); *R_f* = 0.3 (*n*-pentane–Et₂O, 2:1).

IR (capillary): 3469, 2934, 2856, 1742, 1448, 1360, 1255, 1177, 1069, 956, 846, 763, 701, 629, 573, 531 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = -0.20 (s, 3 H, CH₃Si), 0.04 (s, 3 H, CH₃Si), 0.88 (s, 9 H, *t*-C₄H₉Si), 1.21 (s, 3 H, CH₃), 1.34 (s, 3 H,

 $\ensuremath{\mathbb{C}}$ Georg Thieme Verlag Stuttgart \cdot New York

CH₃), 2.44 (dd, J = 6.2, 16.1 Hz, 1 H, CH₂^a), 2.89 (dd, J = 2.5, 16.1 Hz, 1 H, CH₂^b), 3.13 (s, 3 H, SO₂CH₃), 3.41–3.45 (m, 1 H, H-4), 3.45 (s, 3 H, OCH₃), 3.68 (s, 3 H, CO_2CH_3), 3.85 (dd, J = 3.5, 8.2 Hz, 1 H, H-3), 4.16-4.29 (m, 2 H, H-2, CHOMs), 4.73 (d, J = 6.7 Hz, 1 H, H-5), 7.26–7.39 (m, 5 H, ArH).

¹³C NMR (75 MHz, CDCl₃): $\delta = -4.9, -4.5, 18.1, 19.1, 25.7$ (3 C), 29.1, 37.5, 39.3, 51.7, 61.4, 69.0, 71.6, 75.3, 75.9, 88.2, 99.1, 127.7 (2 C), 127.8, 128.2 (2 C), 141.3, 171.1.

MS (EI, 70 eV): m/z (%) = 59 (14), 73 (31), 89 (16), 153 (10), 221 (100), 222 (20), 223 (36).

HRMS-ESI: $m/z [M + Na]^+$ calcd for $C_{25}H_{42}O_9SSi + Na: 569.2211;$ found: 569.2201.

(2S,3R,4R)-4-Hydroxy-2-[(1S,2R)-2-hydroxy-1-methoxy-2phenylethyl]-6-oxotetrahydro-2H-pyran-3-yl Methanesulfonate (14)

To a solution of 13 (583 mg, 1.07 mmol) in THF (10 mL) was added concd H₂SO₄ (0.46 mL, 8.53 mmol). The mixture was stirred at r.t. overnight and quenched with sat. aq CaCO₃ (1 mL). After extraction with EtOAc $(3 \times 10 \text{ mL})$, the combined organic layers were dried (MgSO₄). Evaporation of the solvent and column chromatography (n-pentane-EtOAc, 1:3) of the crude product mixture afforded 14 as a colorless solid; yield: 270 mg (70%); mp 26-27 °C; $[\alpha]_D^{24}$ -34.6 (c = 0.75, CHCl₃); $R_f = 0.4$ (n-pentane–EtOAc, 1:3).

IR (ATR): 3440, 3026, 2937, 1729, 1453, 1344, 1222, 1171, 1090, 936, 850, 816, 762, 705 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): $\delta = 2.69$ (dd, J = 9.6, 17.5 Hz, 1 H, CH_2^{a}), 2.86 (dd, J = 5.9, 17.5 Hz 1 H, CH_2^{b}), 3.12 (s, 3 H, OCH_3), 3.28 (s, 3 H, SO₂CH₃), 3.67–3.73 (m, 1 H, H-4), 4.54–4.61 (m, 1 H, CH), 4.65–4.69 (m, 1 H, H-3), 4.80 (d, J = 4.7 Hz, 1 H, H-5), 5.34– 5.39 (m, 1 H, CHOMs), 7.32-7.44 (m, 5 H, ArH).

The integrals at 2.86 ppm and 3.28 ppm were slightly larger than expected and it was assumed that the two missing alcohol protons overlap.

¹³C NMR (75 MHz, CDCl₃): δ = 34.7, 38.8, 62.2, 63.7, 72.6, 76.1, 80.8, 85.9, 126.2 (2 C), 128.6 (2 C), 128.9, 140.0, 167.9.

MS (EI, 70 eV): m/z (%) = 107 (13), 127 (10), 135 (91), 145 (10), 155 (17), 159 (12), 161 (12), 215 (65), 229 (32), 233 (41), 247 (100), 248 (16), 265 (17), 343 (41, [M – OH]⁺).

Anal. Calcd for C₁₅H₂₀O₈S (360.09): C, 49.99; H, 5.59. Found: C, 50.13; H, 5.48.

Methyl (3R,4R,5S,6S,7R)-3,5,7-Trihydroxy-6-methoxy-4-

[(methylsulfonyl)oxyl-7-phenylheptanoate (15) Compound 13 (583 mg, 1.07 mmol) was deprotected with concd H₂SO₄ (0.46 mL) in MeOH-THF (1:1, 22 mL). The workup procedure was done as described above. Crystallization from EtOAc in the refrigerator resulted in suitable single crystals; yield: 192 mg (46%); mp 109–111 °C; $[\alpha]_D^{25}$ +5.6 (*c* = 0.75, MeOH); R_f = 0.5 (*n*pentane-EtOAc, 1:3).

IR (ATR): 3491, 3188, 3027, 2914, 2828, 2076, 1720, 1498, 1443, 1386, 1337, 1291, 1236, 1172, 1063, 1014, 979, 914, 856, 823, 763, 731, 700, 675 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): $\delta = 2.63$ (dd, J = 9.4, 16.8 Hz, 1 H, CH_2^{a}), 2.86 (dd, J = 3.0, 16.8 Hz, 1 H, CH_2^{b}), 3.08 (s, 3 H, CHOCH₃), 3.18 (s, 3 H, SO₂CH₃), 3.58 (dd, J = 1.7, 6.7 Hz, 1 H, H-4), 3.72 (m, 4 H, CO₂CH₃, OH), 3.97 (d, J = 4.3 Hz, 1 H, OH), 4.14– 4.23 (m, 2 H, OH, H-3), 4.46-4.53 (m, 1 H, CHCH2), 4.88 (dd, J = 4.2, 5.7 Hz, 1 H, CHOMs), 5.17 (d, J = 6.2 Hz, 1 H, H-4), 7.25-7.41 (m, 5 H, ArH).

¹³C NMR (75 MHz, CDCl₃): δ = 36.9, 38.8, 52.1, 60.1, 67.1, 70.7, 72.0, 83.5, 85.4, 125.9 (2 C), 127.5, 128.4 (2 C), 141.2, 173.2.

MS (EI, 70 eV): m/z (%) = 113 (7), 115 (13), 119 (9), 121 (17), 125 (10), 134 (29), 135 (15), 140 (18), 144 (10), 157 (26), 165 (29), 172 (11), 249 (17), 393 (1, [M + H]).

© Georg Thieme Verlag Stuttgart · New York

HRMS-ESI: m/z [M + H]⁺ calcd for C₁₆H₂₅O₉S: 393.1214; found: 393.1219.

(2R,3S,3aS,7R,7aS)-7-Hydroxy-3-methoxy-2-phenyltetrahydro-2H-furo[3,2-b]pyran-5(6H)-one (4)

Lactone 14 (150 mg, 0.4 mmol) was dissolved in pyridine (0.8 mL) and the mixture was heated at reflux for 5 h. After adding H_2O (20 mL), the aqueous phase was extracted with EtOAc (3×15 mL). The combined organic phases were washed with HCl (1.5 M, 5 mL) and brine (10 mL), dried (MgSO₄), and evaporated. Chromatographic purification on silica gel (eluent: CH₂Cl₂-MeOH, 20:1) afforded the title compound 4 as a colorless glassy solid; yield: 89 mg (82%); $[\alpha]_D^{25}$ -21.2 (c = 0.52, CHCl₃); $R_f = 0.3$ (CH₂Cl₂-MeOH, 20:1).

IR (ATR): 3404, 2923, 2853, 2322, 2190, 2098, 1728, 1496, 1454, 1397, 1354, 1256, 1225, 1192, 1130, 1059, 1009, 920, 841, 791, 763, 725, 702 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): $\delta = 2.66-2.76$ (m, 1 H, CH₂^a), 2.79-2.89 (br s, 1 H, OH), 3.03-2.89 (m, 4 H, CH₃, CH₂^b), 3.87 (dd, J = 2.9, 5.7 Hz, 1 H, H-4), 4.18–4.28 (m, 1 H, H-2), 4.36–4.43 (m, 1 H, CH), 4.78 (d, *J* = 2.9 Hz, 1 H, H-5), 5.36 (dd, *J* = 5.7, 8.4 Hz, 1 H, H-3), 7.04-7.77 (m, 5 H, ArH).

¹³C NMR (75 MHz, CDCl₃): δ = 35.6, 60.6, 66.6, 74.6, 80.1, 81.5, 82.0, 126.9 (2 C), 127.0, 128.1 (2 C), 135.0, 170.2.

MS (EI, 70 eV): *m*/*z* (%) = 58 (100), 65 (11), 77 (21), 79 (12), 87 (61), 91 (51), 103 (12), 107 (26), 115 (11), 131 (13), 134 (48), 135 (11), 144 (29), 264 (22, [M⁺]).

Anal. Calcd for C₁₄H₁₆O₅ (264.01): C, 63.63; H, 6.10. Found: C, 63.26; H, 5.96.

(R)-Methyl 3-Hydroxy-3-[(2S,3S,4R,5R)-3-hydroxy-4-methoxy-5-phenyltetrahydrofuran-2-yl|propanoate (3)

4-epi-Methoxy-(-)-goniofupyron (4; 45 mg, 0.17 mmol) was dissolved in MeOH (1 mL) and Amberlyst 15 (17 mg) was added. The mixture was stirred overnight. Direct chromatographic purification on silica gel (eluent: CH2Cl2-MeOH, 20:1) afforded 4-epi-methoxy-(-)-gonioheptolide (3) as a colorless solid; yield: 43 mg (85%); mp 92–93 °C, $[\alpha]_D^{25}$ –58.7 (c = 0.53, CHCl₃), $R_f = 0.4$ (CH₂Cl₂-MeOH, 20:1).

IR (ATR): 3447, 3037, 2927, 2861, 1894, 1727, 1605, 1542, 1495, 1437, 1367, 1262, 1148, 1101, 1068, 999, 957, 913, 873, 850, 757, 698 cm^{-1} .

¹H NMR (300 MHz, CDCl₃): $\delta = 2.74-2.77$ (m, 2 H, CH₂), 3.02 (s, $3 H, OCH_3$, 3.29 (d, J = 9.2 Hz, 1 H, OH), 3.51 (d, J = 6.2 Hz, 1 H, J)OH), 3.71 (s, 3 H, CO₂CH₃), 3.84 (dd, *J* = 3.9, 5.1 Hz, 1 H, H-4), 4.04 (dd, J = 3.3, 7.0 Hz, 1 H, H-2), 4.37–4.46 (m, 1 H, CH), 4.55– 4.65 (m, 1 H, H-3), 4.84 (d, J = 3.9 Hz, 1 H, H-5), 7.25–7.47 (m, 5 H, ArH).

¹³C NMR (75 MHz, CDCl₃): δ = 38.8, 51.7, 60.0, 67.3, 73.4, 80.5, 80.8, 82.8, 127.0 (2 C), 127.9, 128.1 (2 C), 136.1, 172.1.

MS (EI, 70 eV): *m*/*z* (%) = 103 (22), 135 (36), 145 (45), 163 (100), 229 (73), 230 (11), 233 (13), 247 (16), 265 (21, [M + H]).

Anal. Calcd for C₁₅H₂₀O₆ (264.01): C, 60.80; H, 6.80. Found: C, 60.83; H, 6.92.

Acknowledgment

We thank the former Degussa AG and BASF SE for the donation of chemicals.

References

(1) Blázquez, M. A.; Bermejo, A.; Zafra-Polo, M. C.; Cortes, D. Phytochem. Anal. 1999, 10, 161.

- (2) Hlubucek, J. R.; Robertson, A. V. Aust. J. Chem. 1967, 20, 2199.
- (3) For example, see: (a) Lan, Y.-H.; Chang, F.-R.; Yang, Y.-L.; Wu, Y.-C. *Chem. Pharm. Bull.* 2006, *54*, 1040. (b) Bermejo, A.; Tormo, J. R.; Cabedo, N.; Estornell, E.; Figadère, B.; Cortes, D. *J. Med. Chem.* 1998, *41*, 5158. (c) Fang, X.-P.; Anderson, J. E.; Chang, C.-J.; McLaughlin, J. L. *Tetrahedron* 1991, *47*, 9751. (d) Lan, Y.-H.; Chang, F.-R.; Liaw, C.-C.; Wu, C.-C.; Chiang, M.-Y.; Wu, Y.-C. *Planta Med.* 2005, *71*, 153. (e) Fang, X. P.; Anderson, J. E.; Chang, C. J.; McLaughlin, J. L.; Fanwick, P. E. *J. Nat. Prod.* 1991, *54*, 1034.
- (4) Wiart, C. Evid. Based Med. 2007, 4, 299.
- (5) Fang, X.-P.; Anderson, J. E.; Qiu, X.-X.; Kozlowski, J. F.; Chang, C.-J.; McLaughlin, J. L. *Tetrahedron* **1993**, *49*, 1563.
- (6) Mukai, C.; Yamashita, H.; Hirai, S.; Hanaoka, M.; McLaughlin, J. L. Chem. Pharm. Bull. 1999, 47, 131.
- (7) Gupta, S.; Rajagopalan, M.; Alhamadsheh, M. M.; Tillekeratne, L. M. V.; Hudson, R. A. *Synthesis* 2007, 3512.
- (8) Gupta, S.; Poeppelman, L.; Hinman, C. L.; Bretz, J.; Hudson, R. A.; Tillekeratne, L. M. V. *Bioorg. Med. Chem.* 2010, 18, 849.
- (9) For example, see: (a) Enders, D.; Paleček, J.; Grondal, C. *Chem. Commun.* 2006, 655. (b) Enders, D.; Voith, M.; Ince, S. J. Synthesis 2002, 1775. (c) Enders, D.; Jegelka, U. *Tetrahedron Lett.* 1993, 34, 2453. (d) Enders, D.; Bockstiegel, B. Synthesis 1989, 493.
- (10) For examples, see: (a) Enders, D.; Terteryan, V.; Paleček, J. *Synthesis* 2010, 2979. (b) Enders, D.; Terteryan, V.; Paleček, J. *Synthesis* 2008, 2278. (c) Grondal, C.; Enders, D. *Synlett* 2006, 3507. (d) Enders, D.; Grondal, C. *Tetrahedron* 2006, *62*, 329. (e) Enders, D.; Grondal, C. *Angew. Chem. Int. Ed.* 2005, *44*, 1210; *Angew. Chem.* 2005, *117*, 1235.

- (11) For example, see: (a) Enders, D.; Barbion, J. Chem.-Eur. J. 2008, 14, 2842. (b) Enders, D.; Peiffer, E.; Raabe, G. Synthesis 2007, 1021. (c) Enders, D.; Vrettou, M. Synthesis 2006, 2155. (d) Enders, D.; Grondal, C.; Vrettou, M. Synthesis 2006, 3597. (e) Enders, D.; Hieronymi, A.; Ridder, A. Synlett 2005, 2391. (f) Enders, D.; Grondal, C.; Vrettou, M.; Raabe, G. Angew. Chem. Int. Ed. 2005, 44, 4079; Angew. Chem. 2005, 117, 4147. (g) Enders, D.; Breuer, I.; Drosdow, E. Synthesis 2005, 3239. (h) Enders, D.; Prokopenko, O. F. Liebigs Ann. Chem. 1995, 1185.
- (12) (a) Hoppe, D.; Schmincke, H.; Kleemann, H.-W. *Tetrahedron* 1989, 45, 687. (b) Forbes, D. C.; Ene, D. G.; Doyle, M. P. *Synthesis* 1998, 879.
- (13) Kobayashi, Y.; Takemoto, Y.; Kamijo, T.; Harada, H.; Ito, Y.; Terashima, S. *Tetrahedron* **1992**, *48*, 1853.
- (14) For a review, see: Job, A.; Janeck, C. F.; Bettray, W.; Peters, R.; Enders, D. *Tetrahedron* **2002**, *58*, 2253.
- (15) (a) Evans, D. A.; Chapman, K. T.; Carreira, E. M. J. Am. Chem. Soc. 1988, 110, 3560. (b) Wu, Y.; Houk, K. N. J. Am. Chem. Soc. 1993, 115, 10993. (c) Enders, D.; Kownatka, D.; Hundertmark, T.; Prokopenko, O. F.; Runsink, J. Synthesis 1997, 649. (d) Cieplac, P.; Howard, A. E.; Powers, J. P.; Rychnovsky, S. D.; Kollman, P. A. J. Org. Chem. 1996, 61, 3662. (e) Vicario, J. L.; Badia, D.; Dominguez, E.; Rodriguez, M.; Carrillo, L. J. Org. Chem. 2000, 65, 3734.
- (16) Crystallographic data for 15 reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC 818574. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif or on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [Fax: +44(1223)336033; e-mail: deposit@ccdc.cam.ac.uk].