

Available online at www.sciencedirect.com

Tetrahedron Letters 46 (2005) 8895-8897

Tetrahedron Letters

Organic reactions in water: an efficient one-pot synthesis of acyloxiranes from Baylis–Hillman adducts using hypervalent iodine $\stackrel{\stackrel{}_{\sim}}{}$

Biswanath Das,* Harish Holla, Katta Venkateswarlu and Anjoy Majhi

Organic Chemistry Division-I, Indian Institute of Chemical Technology, Hyderabad 500 007, India Received 28 June 2005; revised 5 October 2005; accepted 18 October 2005

Abstract—Treatment of Baylis–Hillman adducts with iodosobenzene (PhI=O) in the presence of a catalytic amount of KBr in water at room temperature afforded the corresponding acyloxiranes in good yields. © 2005 Elsevier Ltd. All rights reserved.

Hypervalent iodine reagents have attracted considerable attention in organic synthesis due to their interesting activity, ready availability and easy handling¹ whilst organoiodine(III) reagents have been employed to carry out useful transformations. We have recently applied diacetoxyiodobenzene (DIB) to the preparation of isoxazolines from activated alkenes by treatment with aldoximes.² In continuation of our work on the application of hypervalent iodine reagents to organic synthesis, we now report the use of iodosobenzene (PhI=O) for the preparation of acyloxiranes from the Baylis–Hillman adducts **1**.

Baylis–Hillman adducts, 3-hydroxy-2-methylene alkanoates and 3-hydroxy-2-methylene-alkanenitriles are useful precursors in synthesis.³ During our work^{2a,4} on the reactions of these adducts we have observed that treatment of these compounds 1 with iodosobenzene in the presence of a catalytic amount of KBr in water at room temperature produced the corresponding acyloxiranes 2 (Scheme 1).

It is known that, (i) iodosobenzene can oxidize secondary alcohols including allylic alcohols to the corresponding keto compounds⁵ and, (ii) electron deficient enones can undergo epoxidation with this reagent.⁶ Thus, Baylis–Hillman adducts containing the necessary structural requirements, that is, an allylic hydroxyl group and an electron-withdrawing group at the requisite positions were considered for single-step conversion into their corresponding acyloxiranes.

Scheme 1.

Keywords: Baylis-Hillman adducts; Hypervalent iodine; PhI=O; Acyloxiranes; Aqueous medium.

th Part 66 in the series, 'Studies on Novel Synthetic Methodologies'. IICT Communication No. 051003.

^{*} Corresponding author. Tel.: +91 40 27173874; fax: +91 40 27160512; e-mail: biswanathdas@yahoo.com

^{0040-4039/\$ -} see front matter © 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2005.10.078

Table 1.	Pre	oaration	of	acyloxiranes	from	Baylis-	-Hillman	adducts	using	PhI=O	activated by	KBr ^a
----------	-----	----------	----	--------------	------	---------	----------	---------	-------	-------	--------------	------------------

Entry	Reactant 1	Product 2	Time (h)	Isolated yield (%) ^b
a	CI CI COOCH3	CI COOCH3	6	81
b	CI CN	CI-CN	5	80
С	O2N COOCH3	O ₂ N, COOCH ₃	6	70
d	OH COOCH ₃	COOCH3	6	85
e		CI O COOCH ₃	5	64
f	CI OH CI CN		5	56
g	OH COOCH ₃	O_COOCH ₃ O ₂ N	8	78
h	OH CN MeO	MeO	6	65
i	F ₃ C COOCH ₃	F ₃ C COOCH ₃	1.6	72

^a The structures of the products were established from their spectral (¹H NMR and MS) data.

^bA minor amount (~5%) of the parent aldehydes from which the Baylis–Hillman adducts were prepared was also obtained.

A series of acyloxiranes was prepared⁷ from Baylis– Hillman adducts **1** with an ester or a nitrile substituent (Table 1). These adducts containing an electron-donating or electron-withdrawing group on the aromatic ring underwent the conversion smoothly. The structures of the products were established from their spectral (¹H NMR and MS) data.⁷ Previously this conversion has been carried out⁸ using NaOCl but this method involves the possibilities of further oxidation of the acyloxiranes to acids. In the present case, minor amounts of the parent aldehyde (\approx 5%) from which the Baylis–Hillman adducts were prepared were also obtained.

Initially, we used iodosobenzene by itself for oxidation of the Baylis–Hillman adducts **1** but no products were formed. However, when KBr or LiBr was added⁵ to this reagent in water its activity increased significantly and the corresponding acyloxiranes 2 were formed.

The mechanism of the reaction may involve⁵ depolymerization of iodosobenzene by the additon of KBr to form the highly reactive intermediate **A**. This intermediate reacts with the hydroxyl group of Baylis– Hillman adduct **1** to form the enone **B**. Iodosobenzene then attacks⁶ the enone **B** to produce the acyloxirane **2** (Scheme 2).

In conclusion, we have developed an efficient process for the synthesis of acyloxiranes from Baylis–Hillman adducts using iodosobenzene activated by a catalytic amount of KBr in water at room temperature. Iodosobenzene has been utilized here for twofold oxidation of a *secondary* alcohol of a Baylis–Hillman adduct

followed by subsequent epoxidation of the generated enone in the one-pot synthesis of an acyloxirane.

Acknowledgements

The authors thank UGC and CSIR, New Delhi, for financial assistance.

References and notes

- (a) Varvoglis, A. Hypervalent Iodine in Organic Synthesis; Academic Press: New York, 1997; (b) Zhdankin, V. V.; Stang, P. J. Chem. Res. 2002, 102, 2523–2584; (c) Wirth, T. Hypervalent Iodine Chemistry: Modern Developments in Organic Synthesis. In Topics in Current Chemistry; Springer: Berlin, 2003; p 224.
- (a) Das, B.; Holla, H.; Mahender, G.; Banerjee, J.; Reddy, M. *Tetrahedron Lett.* 2004, 45, 7347–7350; (b) Das, B.; Holla, H.; Mahender, G.; Katta, V.; Bandgar, B. *Synthesis* 2005, 10, 1572–1574.
- (a) Hoffman, H. M. R.; Rabe, J. Angew. Chem., Int. Ed. Engl. 1985, 24, 94–110; (b) Basavaiah, D.; Bakthadoss, M.; Pandiaraju, S. J. Chem. Soc., Chem. Commun. 1998, 1639– 1640.
- (a) Das, B.; Banerjee, J.; Ravindranath, N.; Venkataiah, B. *Tetrahedron Lett.* 2004, 45, 6709–6710; (b) Das, B.; Banerjee, J.; Ravindranath, N. *Tetrahedron* 2004, 60, 8357–8361; (c) Das, B.; Banerjee, J.; Mahender, G.; Majhi, A. *Org. Lett.* 2004, 6, 3349–3352; (d) Das, B.; Banerjee, J.; Majhi, A.; Mahender, G. *Tetrahedron Lett.* 2004, 45, 9225–9227.
- Hohma, H.; Takizawa, S.; Maegawa, T.; Kita, Y. Angew. Chem., Int. Ed. 2000, 39, 1306–1308.
- 6. McQuaid, K. M.; Pettus, T. R. R. Synlett 2004, 2403-2405.

- 7. General procedure for the preparation of acyloxiranes: To a stirred mixture of the Baylis–Hillman adduct (1 mmol) and KBr (0.2 mmol) in water (2 ml), PhI=O (2.2 mmol) was added at room temperature. Stirring was continued and the reaction was monitored by TLC. After completion, the reaction mixture was extracted with ethyl acetate (3×5 ml), the combined organics washed with brine (3×5 ml) and then dried over anhydrous Na₂SO₄. The extract was filtered and the filtrate was concentrated under vacuum. The residue was purified by column chromatography over silica gel (EtOAc/*n*-hexane) to afford the pure acyloxirane. The spectral (¹H NMR and MS) and analytical data of new acyloxiranes are given below. The remaining products are known.⁸
 - Compound **2c**: ¹H NMR (CDCl₃, 200 MHz): δ 8.82 (1H, d, J = 2.0 Hz), 8.46 (1H, dd, J = 8.0, 2.0 Hz), 8.31 (1H, dd, J = 8.0, 2.0 Hz), 7.71 (1H, t, J = 8.0 Hz), 3.83 (3H, s), 3.47 (1H, d, J = 6.0 Hz), 3.22 (1H, d, J = 6.0 Hz); EIMS: m/z 251 (M⁺); Anal. Calcd for C₁₁H₉NO₆: C, 52.59; H, 3.59; N, 5.58. Found: C, 52.74; H, 3.62; N, 5.53.

Compound **2e**: ¹H NMR (CDCl₃, 200 MHz): δ 7.73 (1H, d, J = 8.0 Hz), 7.48 (1H, d, J = 2.0 Hz), 7.36 (1H, dd, J = 8.0, 2.0 Hz), 3.82 (3H, s), 3.43 (1H, d, J = 6.0 Hz), 3.12 (1H, d, J = 6.0 Hz); EIMS: m/z 278, 276, 274 (M⁺); Anal. Calcd for C₁₁H₈Cl₂O₄: C 48.00; H, 2.91. Found: C, 48.31; H, 2.84.

Compound **2f**: ¹H NMR (CDCl₃, 200 MHz): δ 7.56– 7.33 (3H, m), 3.55 (1H, d, J = 6.0 Hz), 3.21 (1H, d, J = 6.0 Hz): EIMS: m/z 245, 243, 241 (M⁺⁻); Anal. Calcd for C₁₀H₅Cl₂NO₂: C, 49.59; H, 2.07; N, 5.79. Found: C, 49.82; H, 2.11; N, 5.63.

Compound **2i**: ¹H NMR (CDCl₃, 200 MHz): δ 8.28 (1H, d, J = 2.0 Hz), 8.19 (1H, dd, J = 8.0, 2.0 Hz), 7.90 (1H, dd, J = 8.0, 2.0 Hz), 7.64 (1H, t, J = 8.0 Hz), 3.79 (3H, s), 3.40 (1H, d, J = 6.0 Hz), 3.21 (1H, d, J = 6.0 Hz); EIMS: m/z 274 (M⁺); Anal. Calcd for C₁₂H₉F₃O₄: C, 52.56; H, 3.29. Found: C, 52.76; H, 3.20.

8. Foucaud, A.; le Rouille, E. Synthesis 1990, 787-789.