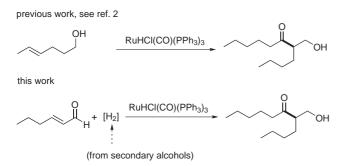
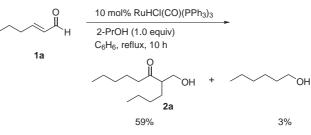
RuHCl(CO)(PPh₃)₃-Catalyzed Reductive Dimerization of α,β-Unsaturated Aldehydes Leading to α-Hydroxymethyl Ketones

Takashi Doi, Takahide Fukuyama, Satoshi Minamino, Ilhyong Ryu*


Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan Fax +81(72)2549695; E-mail: ryu@c.s.osakafu-u.ac.jp Received 26 April 2006

Abstract: The reductive dimerization α , β -unsaturated aldehydes to give saturated ketones was achieved using RuHCl(CO)(PPh₃)₃ as a catalyst in the presence of secondary alcohols as hydrogen source. The reaction is likely to proceed via the hydroruthenation of α , β -unsaturated aldehydes followed by aldol reaction of the resultant ruthenium enolates with α , β -unsaturated aldehydes to give unsaturated α -hydroxymethyl ketones, which undergo transfer hydrogenation to give α -hydroxymethyl ketones.

Key words: ruthenium enolates, aldol reaction, α -hydroxymethyl ketones, α , β -unsaturated aldehydes, transfer hydrogenation


Metal-catalyzed coupling reactions have found a tremendous number of applications in organic synthesis.¹ We recently reported unusual dimerization of unsaturated primary alcohols to give a-hydroxymethyl ketones, which was catalyzed by RuHCl(CO)(PPh₃)₃ (first equation of Scheme 1).² We also found that transfer hydrogenation of unsaturated ketones leading to saturated ketones took place using the same Ru-catalyst and secondary alcohols, such as 2-propanol, as hydrogen source.³ We became interested in whether the reductive dimerization reaction of α,β -unsaturated aldehydes under the transfer hydrogenation conditions would occur to give the dimerization products or not (second equation of Scheme 1). Herein we report that RuHCl(CO)(PPh₃)₃ indeed catalyzes reductive dimerization of α , β -unsaturated aldehydes **1** leading to good to modest yields of α -hydroxymethyl ketones 2.

When a benzene solution of 2-hexenal (1a, 0.16 M) and 2-propanol (1.0 equiv) was treated with RuHCl(CO)(PPh₃)₃

Scheme 1 Two types of dimerization reactions leading to α -hydroxymethyl ketones

SYNLETT 2006, No. 18, pp 3013–3016 Advanced online publication: 25.10.2006 DOI: 10.1055/s-2006-951518; Art ID: S09806ST © Georg Thieme Verlag Stuttgart · New York (10 mol%) at reflux for 10 hours, 2-hydroxymethyl-5dodecanone (**2a**) was formed in 59% yield (Scheme 2). A small amount of 1-hexanol was formed as a by-product. The use of some other ruthenium complexes, such as Ru-HCl(PPh₃)₃ and RuH₂(PPh)₄, under similar conditions was unsuccessful, and resulted in the recovery of **1a** in 92% and 83% yields, respectively.

The results of the reductive dimerization of a series of α , β unsaturated aldehydes 1 are summarized in Table 1. Some other secondary alcohols, such as cyclohexanol and 2-octanol, could be employed as a hydrogen source (entries 1 and 2). Crotyl aldehyde (1b) underwent dimerization reaction, leading to the hydroxymethyl ketone 2b in 56% isolated yield (entry 3). Whereas the reaction of cinnamaldehyde (1c) in the presence of 1.2 equivalents of 2-propanol gave the corresponding α -hydroxymethyl ketone 2c, along with small amount of unsaturated hydroxymethyl ketone **3c** (entry 4), the formation of **3c** was suppressed by using a larger amount of 2-propanol (entry 5). No dimerization product was obtained in the reaction of 2methyl-2-pentanal, (entry 7). The reaction of 2-decenal (1i), having a long alkyl chain, gave 2i in 47% together with 6% yield of unsaturated dimer 3i (entry 11).

We carried out time-course experiment of the reaction using **1a** as a model substrate, whose results are summarized in Scheme 3. Thus, it was found that **1a** was consumed within 15 minutes, and unsaturated dimer **3a**⁴ was formed as a primary product. Then **3a** was converted into saturated dimer **2a** by transfer hydrogenation.³ After 10 hours, conversion of **3a** to **2a** was complete.

Taking the results into consideration, a possible mechanism for the present reductive dimerization is outlined in Scheme 4. Hydroruthenation of **1a** would give ruthenium enolate **A**,⁵ which then undergoes aldol reaction with **1a**.^{6,7} β -Elimination from the resulting aldol adduct **B**, followed by transfer hydrogenation of an aldehyde moiety

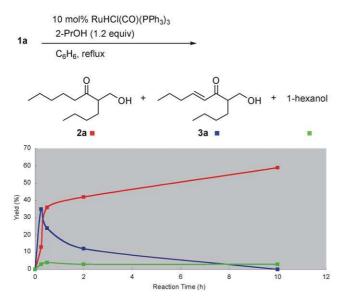

Entry	Substrate	Alcohol (equiv)	Product	Yield (%) ^b
1 2	O ↓ ↓ ↓ ↓	Cyclohexanol (1.4) 2-Octanol (1.2)	о ————————————————————————————————————	64 62
3	о Ц 1b	2-PrOH (1.2)	о — ОН 2b	56
4	Ph H Ic	2-PrOH (1.2)	Ph Ph Ph Ph Ph OH Ph OH Ph OH Ph OH OH Ph $3c$ $2c$	
			49 5	
5	1c	2-PrOH (2.0)	65 <1	
6	$Ar \longrightarrow H$ 1d $Ar = p-MePh$	2-PrOH (2.0)	Ar OH Ar OH 2d	53
7	о Н le	2-PrOH (1.3)	Not formed ^c	
8	↓ ↓ If	2-PrOH (2.0)	он 2f	57
9	↓ ↓ 1g	2-PrOH (2.0)	он Эд	55
10	Ih	2-PrOH (2.0)	он ОН 2h	55
11	li 1i	_H 2-PrOH (1.4)	о ОН 2i	47
			(m + n = 6)	6

Table 1 Reductive Dimerization of α,β -Unsaturated Aldehydes 1 to 2-Hydroxymethyl Ketones 2 Catalyzed by RuHCl(CO)(PPh₃)₃^a

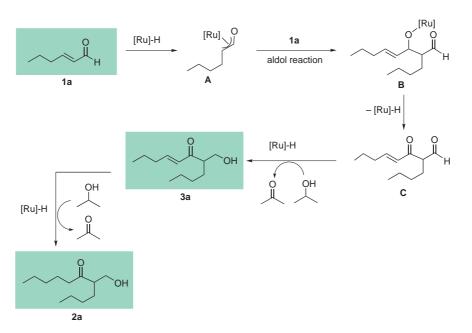
^a General conditions: substrate (1 mmol), alcohol (1.2–2.0 mmol), RuHCl(CO)(PPh₃)₃ (10 mol%), C₆H₆ (6 mL), reflux, 10 h.

^b Isolated yields. In all cases, sat. alcohols were formed as by-product. For examples, entry 3: 5%, entry 5: 11%, entry 9: 6%.

^c Unreacted 1e, 2-methylpentanal, and 2-methyl-1-pentanol were obtained as a mixture.

Scheme 3 Time course of the reaction of 1a

gives unsaturated dimer **3a**. The second transfer hydrogenation of **3a** then takes place to give α -hydroxymethyl ketone **2a**.


In conclusion, the reductive dimerization of α , β -unsaturated aldehydes **1** to α -hydroxymethyl ketones **2** is catalyzed effectively by RuHCl(CO)(PPh₃)₃ in the presence of secondary alcohols as hydrogen source.⁸ The reaction proceeds via aldol reaction of ruthenium enolates with α , β unsaturated aldehydes, followed by transfer hydrogenation to give unsaturated dimer **3** as a primary product. Selective transfer hydrogenation of the C=C bond gave saturated dimer **2** as the final product. Extension of the present work to cross-coupling reactions is now being pursued in our laboratory and will be reported in due course.

Acknowledgment

I.R. acknowledges a Grant-in-Aid for Scientific Research on Priority Areas 'Advanced Molecular Transformations of Carbon Resources' from MEXT Japan. T.F. acknowledges a Grant-in-Aid for Young Scientists (B) from MEXT Japan for financial support.

References and Notes

- (a) Transition Metals for Organic Synthesis, Vols. 1 and 2; Beller, M.; Bolm, C., Eds.; Wiley-VCH: Weinheim, **1998**.
 (b) Applied Homogeneous Catalysis with Organometallic Compounds, Vols. 1 and 2; Cornils, B.; Herrmann, W. A., Eds.; VCH: Weinheim, **1996**.
- (2) Doi, T.; Fukuyama, T.; Minamino, S.; Husson, G.; Ryu, I. *Chem. Commun.* **2006**, 1875.
- (3) Doi, T.; Fukuyama, T.; Horiguchi, J.; Okamura, T.; Ryu, I. Synlett 2006, 721.
- (4) After 15 min, 3a contained ca. 17% of double-bond isomers.
- (5) For studies on ruthenium enolate complexes, see:
 (a) Hartwig, J. F.; Bergman, R. G.; Andersen, R. A. Organometallics 1991, 10, 3326. (b) Tasley, B. T.; Rapta, M.; Kulawiec, R. J. Organometallics 1996, 15, 2852.
- (6) For Ru-catalyzed aldol-type reactions, see: (a) Matsuda, I.; Shibata, M.; Sato, S. J. Organomet. Chem. 1988, 340, C5. (b) Sato, S.; Matsuda, I.; Shibata, M. J. Organomet. Chem. 1989, 377, 347. (c) Naota, T.; Taki, T.; Mizuno, M.; Murahashi, S.-I. J. Am. Chem. Soc. 1989, 111, 5954. (d) Mizuho, Y.; Kasuga, N.; Komiya, S. Chem. Lett. 1991, 2127. (e) Murahashi, S.-I.; Naota, T.; Taki, H.; Mizuno, M.; Takaya, H.; Komiya, S.; Mizuho, Y.; Oyasato, N.; Hiraoka, M.; Hirano, M.; Fukuoka, A. J. Am. Chem. Soc. 1995, 117, 12436. (f) Uma, R.; Davies, M.; Crévisy, C.; Grée, R. Tetrahedron Lett. 2001, 42, 3069. (g) Wang, M.; Yang, X.-F.; Li, C.-J. Eur. J. Org. Chem. 2003, 998. (h) Yang, X.-F.; Wang, M.; Varma, R. S.; Li, C.-J. Org. Lett. 2003, 5, 657. (i) Yang, X.-F.; Wang, M.; Varma, R. S.; Li, C.-J. J. Mol. Catal. A: Chem. 2004, 214, 147. (j) Martín-Matute, B.; Bogár, K.; Edin, M.; Kaynak, F. B.; Bäckvall, J.-E. Chem. Eur. J. 2005, 11, 5832.

Scheme 4 Possible mechanism of reductive dimerization

- (7) For reviews on catalytic reductive aldol coupling, see:
 (a) Motherwell, W. B. *Pure Appl. Chem.* 2002, *74*, 135.
 (b) Huddleston, R. R.; Krische, M. J. *Synlett* 2003, 12.
 (c) Jang, H.-Y.; Krische, M. J. *Eur. J. Org. Chem.* 2004, 3953. (d) Jang, H.-Y.; Krische, M. J. *Acc. Chem. Res.* 2004, *37*, 653. (e) Chiu, P. *Synthesis* 2004, 2210.
- (8) General Procedure for the RuHCl(CO)(PPh₃)₃-Catalyzed Reductive Dimerization of α,β-Unsaturated Aldehyde.

A mixture of **1a** (103 mg, 1.03 mmol), 2-PrOH (63 mg, 1.05 mmol), and RuHCl(CO)(PPh₃)₃ (96.0 mg, 0.1 mmol) in benzene (6 mL) was stirred at reflux for 10 h under an atmosphere of N₂. Purification by silica gel column chromatography and preparative HPLC equipped with GCP column gave α -hydroxymethyl ketone **2a** (59.0 mg, 59%).