CHEMISTRY LETTERS, pp. 35-36, 1982.

```
PALLADIUM-CATALYZED TRANSFORMATION OF ARENEDIAZONIUM SALTS TO ACYL
ARENES BY ORGANOTIN COMPOUNDS AND CARBON MONOXIDE<sup>1)</sup>
```

Kiyoshi KIKUKAWA,* Kiyoshi KONO, Fumio WADA, and Tsutomu MATSUDA Department of Organic Synthesis, Faculty of Engineering, Kyushu University, Hakozaki, Higashi-ku, Fukuoka 812

Arenediazonium salts $(ArN_2X; Ar=2-Me-C_6H_4, 3-Me-C_6H_4, 4-Me-C_6H_4, 2-C1-C_6H_4, 4-C1-C_6H_4, 4-Br-C_6H_4, 4-I-C_6H_4, 3-NO_2-C_6H_4, 4-NO_2-C_6H_4, and C_6H_5; X=BF_4 and PF_6) were effectively transformed to acyl arenes (ArCOR; R=Me, Et and Ph) in good yields (55-90%) by R_4Sn and CO under palladium catalysis.$

Although arenediazonium salts (ArN_2X) have been used to introduce various functional groups into aromatic ring, acyl groups have rarely been introduced. Copper catalyzed reaction of ArN_2X with aldoximes was known to give arylated oximes which are hydrolyzed to aldehydes or ketones.²⁾ However, the yields were generally low. Reactions of ArN_2X with $Ni(CO)_4^{(3)}$ or $Fe(CO)_5^{(4)}$ gave a mixture of ArCOOH and Ar_2CO in low yields. Recent palladium-catalyzed reaction of ArN_2X with CO and RCOONa, in which aroyl palladium species are assumed to be an intermediate, affords excellent methods for transformation of ArN_2X to $ArCOOH^{(5)}$ or ArCOOCOR.⁶⁾ Now we wish to report a direct transformation of ArN_2X to acyl arenes utilizing metathesis between the *in situ* formed aroyl palladium species and R_4Sn in the presence of CO (eq. 1).

 $ArN_2X + CO + R_4Sn - Pd(OAc)_2 (2 mo1\%) \rightarrow ArCOR (R=Me, Et, Ph)$ (1)

A mixture of Me_4Sn (11 mmol), Pd(OAc)₂ (0.2 mmol) and CH_3CN (60 ml) was placed in a 300 ml of glass autoclave. An ArN₂X (X=BF₄ or PF₆) (10 mmol) wrapped in Saran film was held on loosely to stirring rod and was added to the reaction mixture by rotating the stirring rod after introduction of CO (9 kg/cm²). Fine black powders formed by the introduction of CO disappeared on mixing the ArN_2X with the The mixture was then stirred for 0.5 h. solution. The completion of reaction was easily discerned by reappearance of black dispersion. Carbon monoxide was purged and the reaction mixture was refluxed for 1 h. When this procedure was omitted, unknown impurities remained in the products even after distillation. After removal of CH₂CN, the residue was diluted by ether and was neutralized by aq. Na₂CO₂. Pure acetophenone derivatives were obtained by vacuum distillation. The isolated yields of pure ArCOMe based on ArN₂X are summarized in Table I. presence of Cl⁻ (by the use of ArN₂Cl or an addition of LiCl) in the reaction decreased the yields drastically, less than 10%, and increased untractable tarry materials. Furthermore, the presence of C1⁻ in the isolation procedure, e.g.,

ArCOMe(Ar)	Yield(%) ^a	ArCOMe(Ar)	Yield(%) ^a	
Ph	55	4-C1	90	
2-Me	63	4-Br	84	
3-Me	(70) ^b	4-I	79	
4-Me	86	3-NO2	70	
2-C1	76	$4 - NO_2^2$	85	

Table I. Acylation of ArN_2X by CO and Me_4Sn

a) Isolated and purified yields based on ArN_2BF_4 . ArN_2PF_6 was used for Ph and $4-NO_2-C_6H_4$.

b) Small amounts of impurities were contaminated.

washing by brine or hydrochloric acid, must be avoided, because it caused a difficulty to remove Me₃SnC1. Fairly good yields were obtained irrespective of the nature of a substituent on aromatic ring. The excellent yields of nitroacetophenones are noticeable because nitro group on aromatic ring interferes in the Friedel-Crafts acylation. Haloarenes are frequently used in palladiumcatalyzed reactions of aromatics,⁷⁾

e.g., aryl ketones have been synthesized by a reaction of haloarenes with organotin compounds under CO.⁸⁾ In the present method, however, halogen substituents do not enter into the reaction because of high reactivity of diazonium group. Thus, ArN_2X are excellent precursors for the arylpalladium species containing halogen substituents.

 ${\rm Et}_4{\rm Sn}$ and ${\rm Ph}_4{\rm Sn}$ were also utilized in this reaction as shown in Table II. When ${\rm Ph}_4{\rm Sn}$ was used, a mixture of ${\rm ArN}_2{\rm BF}_4$ and ${\rm Pd}({\rm OAc})_2$ should be added to a solution of ${\rm Ph}_4{\rm Sn}$ in ${\rm CH}_3{\rm CN}$ after introduction of CO to obtain the crossed diaryl ketone selectively.

ArN2BF4	R ₄ Sn	Method ^a	Reaction	Products, Yields(%) ^b		
Ar	R		time, h	ArCOR,	RCOR,	R-R
Ph	Et	Α	6	40	-	-
4-Me	Ph	Α	7	74	~10	~8
11	Ph	В	7	63	<0.5	~2
4-Br	Ph	В	6	59	-0.5	~2

Table II. Acylation of ArN₂BF, by eq. 1

a) Method A; ArN_2BF_4 was added finally. Method B; A mixture of ArN_2BF_4 and Pd(OAc)₂ was added finally.

b) Isolated yields based on ArN_2BF_4 . The composition was determined by GLC and NMR.

References

 Part VII in the series "Reaction of Diazonium Salts with Transition Metals".
 Part VI; K. Kikukawa, K. Kono, K. Nagira, F. Wada, and T. Matsuda, J. Org. Chem., in press. 2) C. S. Rondestvest, Org. React., <u>11</u>, 189 (1960). 3) J. C. Clark and R. C. Cookson, J. Chem. Soc., 687 (1962). 4) G. N. Schrauzer, Chem. Ber., <u>94</u>, 1891 (1961). 5) K. Nagira, K. Kikukawa, F. Wada, and T. Matsuda, J. Org. Chem., <u>45</u>, 2365 (1980). 6) K. Kikukawa, K. Kono, K. Nagira, F. Wada, and T. Matsuda, *Tetrahedron Lett.*, <u>21</u>, 2877 (1980). 7) R. F. Heck, Acc. Chem. Res, <u>12</u>, 146 (1979). 8) M. Tanaka, Tetrahedron Lett., 2601 (1979).

(Received October 24, 1981)