Partial Oxidation of Methane to Synthesis Gas over Rhodium Vanadate, RhVO₄: Redispersion of Rh Metal during the Reaction **NOTES** Kimio Kunimori,* Shinichi Umeda, Junji Nakamura, and Toshio Uchijima Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305 (Received March 18, 1992) **Synopsis.** Partial oxidation of methane to synthesis gas $(CO+H_2)$ has been carried out over both $RhVO_4/SiO_2$ and unpromoted Rh/SiO_2 catalysts at temperatures between $300^{\circ}C$ and $720^{\circ}C$ and 1 atomosphere pressure, with a $CH_4:O_2$ of 2:1 under nitrogen dilution. It is found that the $RhVO_4$ compound supported on SiO_2 was reduced to Rh metal and V_2O_3 during the reaction, and the catalyst showed onset of activity to CO and H_2 around $500^{\circ}C$ reaching a maximum conversion in excess of 90% at $650^{\circ}C$, while the unpromoted Rh/SiO_2 catalyst showed the onset of activity at the higher temperature (above $600^{\circ}C$) reaching almost 100% conversion at around $700^{\circ}C$. The different catalytic activity may be ascribed to both the morphology change (Rh dispersion) and the Rh-v andia interaction after the reduction of the $RhVO_4$ compound. Recently, the partial selective oxidation of methane to synthesis gas over the ruthenium-containing rare-earth pyrochlores, LnRu₂O₇ (where Ln is a lanthanide) has been reported by Ashcroft et al.:¹⁾ $$CH_4 + 1/2 O_2 \longrightarrow CO + 2H_2$$ (1) Synthesis gas production is usually achieved by the steam reforming of methane according to: $$CH_4 + H_2O \longrightarrow CO + 3H_2$$ (2) However, the steam reforming reaction is highly endothermic, and side reactions, including the water gas shift reaction, result in a product containing substantial amount of CO_2 . By contrast, the partial oxidation of CH_4 (1) is a mildly exothermic and more selective reaction, and produces a more desirable H_2/CO ration (2:1) for the methanol synthesis process etc. Further studies of this reaction revealed that high yields of synthesis gas (above 90% at 1050 K) can also be obtained over the transition metals such as Ru and Ir, either supported on alumina or present in mixed-metal oxide precursors such as Pr₂Ru₂O₇ and Eu₂Ir₂O₇.^{2,3)} At the very same time when Ashcroft et al. reported their results, we have also found the reaction (1) occurred over rhodium double oxides such as RhVO₄ and related metal catalysts.^{4,5)} We wish to report here our results of the partial oxidation of CH₄ to synthesis gas over both RhVO₄/SiO₂ and unpromoted Rh/SiO₂ catalysts. ## Experimental The unpromoted 5 wt% Rh/SiO₂ catalyst was prepared by impregnation of SiO₂ (JRC-SIO-3) with an aqueous RhCl₃ solution,⁶⁾ followed by H₂ reduction at 500° C. The rhodium vanadate, RhVO₄, supported on the SiO₂ was prepared by the calcination of a vanadia-promoted 4 wt% Rh/SiO₂ catalyst in air at 700° C.⁶⁾ The oxidation of CH₄ was performed with a conventional fixed-bed flow reactor system.⁵⁾ The reactant gases, CH₄ and O₂, were diluted with N₂ to 5 and 2.5%, respectively, and the total flow rate was 39 ml min⁻¹ at atmospheric pressure. The catalyst sample of 200 mg was used in this experient. The reactant and product gases, CH₄, O₂, CO₂, CO, H₂O, and H₂, were analyzed by a gas chromatograph using Porapak Q and Molecular Sieve 5A columns. The XRD measurements were performed with an X-ray diffractometer (Rigaku Co. Ltd.) with a graphite monochromator for Cu $K\alpha$ (40 kV, 30 mA) radiation.⁶⁾ ## Results and Discussion Figure 1 shows the result of the reation of CH₄ oxidation over the RhVO₄/SiO₂ catalyst. The product yields were expressed as the percent (%) CH₄ converted to CO, H₂, H₂O, and CO₂, and the % concentration of the unreacted CH₄ was also plotted as a function of reaction temperature. The products CO₂ and H₂O were obtained at around 500°C. In this case, the reaction is ascribed to the complete oxidation of CH₄. At the higher temperatures, however, the amounts of CO₂ and H₂O diminished, and the amounts of CO and H₂ were increased drastically as the reaction temperature was increased. The conversions of CO and H₂ were about 90% at 650°C. It has already been suggested that the reaction pathway in the partial oxidation process involves an initial conversion of some methane to CO₂ and H₂O, followed by a series of steps involviing the reaction (2) and the CO₂ reforming reaction (3) as follows:2-5) Fig. 1. Product distribution in the $CH_4+1/2O_2$ reaction over the $RhVO_4/SiO_2$ catalyst. \bullet CH_4 , \bigcirc CO_2 , \square CO, \triangle H_2 , ∇ H_2O . $$CH_4 + CO_2 \longrightarrow 2CO + 2H_2$$ (3) The present results are consistent with this view. At higher temperature the production of CO and H_2 is thermodynamically favored because these two reactions (2) and (3) are highly endothermic. As shown in Fig. 2 (1), the X-ray diffraction pattern of the catalyst sample before the reaction exhibited characteristic of the RhVO₄ compound with a small amount of Rh₂O₃. After the catalytic test run, however, the RhVO₄ compound was reduced to Rh metal, as shown in Fig. 2 (2). We have already shown that the RhVO₄ compound was decomposed to Rh metal and V_2O_3 (highly dispersed) on the SiO₂ support above 200 °C in a reducing condition. 6) Therefore, it is probable that the hydrogen produced during the reaction and/or the unreacted CH₄ may trigger the reduction of the ternary oxide. Similar results have been obtained for the Eu₂Ir₂O₇ catalyst,³⁾ which is partially reduced during catalysis, leading to Ir metal particles on Eu₂O₃, and active catalysts comprise those metals (Ru, Ir etc.) that are reduced durig the reaction.^{2,3)}. For a comparison, the result of the unpromoted Rh/ SiO₂ catalyst at the same reaction condition is shown in Fig. 3. The complete oxidation activity to the products CO₂ and H₂O appears to be lowere than that of the RhVO₄ catalyst, and the products of CO and H₂ were not observed at the lower reaction temperature (around 500°C). The onset of activity to CO and H₂ shifted to the higher temperature (above 600°C) reaching almost 100% conversion at aronund 700°C. The Rh particle size of the Rh/SiO₂ catalyst after the catalytic test run was calculated to be about 17 nm from the X-ray line broadening measurement in Fig. 2 (3). On the other hand, the particle sizes of RhVO₄ and Rh metal were calculated to be 30 nm and 10 nm, respectively, from the XRD peaks in Fig. 2 (1) and (2). Apparently, the large RhVO₄ particles were decomposed into smaller Rh particles (redispersion of Rh metal).6) The reduction of RhVO₄ (the decompostion into Rh metal and V₂O₃) on the SiO₂ support resulted in a strong Rh-vanadia interaction, as proved by both hydrogen chemisorption and ethane hydrogenolysis measurements.⁶⁾ Both the morphology change (Rh dispersion) and the vanadia promoter may affect the catalytic performance for the partial oxidation of CH₄, which resulted in the dfferent catalytic behavior in these two catalysts. The RhVO₄/ SiO₂ catalyst (which is decomposed to Rh metal and V₂O₃ during the reaction) has a higher activity than the Rh/SiO₂ catalyst at the lower reaction temperature (e.g., 600°C), but at the higher reaction temperature (e.g., 700°C) the unpromoted Rh catalyst appears to be more active than the RhVO₄/SiO₂ catalyst (see Figs. 1 and 3). It may also be noted that a highly dispersed Rh/Al₂O₃ catalyst has a much higher activity for the partial oxidation of CH₄ to synthesis gas.⁷⁾ More detailed studies, including effects of metal-oxide and metal-support interactions and metal dispersion etc., will be needed to find good catalysts for the selective partical oxidation of CH₄ to synthesis gas. The mixed oxide catalyst systems such as RhVO₄ may have some advantages as a precursor material of active catalysts; Fig. 2. X-ray diffraction patterns of the Rh catalysts. (1) RhVO₄/SiO₂; before the catalytic reaction, (2) RhVO₄/SiO₂; after the catalytic reaction, (3) Rh/SiO₂; after the catalytic reaction. Fig. 3. Product distribution in the $CH_4+1/2O_2$ reaction over the Rh/SiO_2 catalyst. \bullet CH_4 , \bigcirc CO_2 , \square CO, \triangle H_2 , ∇ H_2O . e.g., the RhVO₄ compound can be reproduced by the high-temperature (700°C) oxidation of a sintered Rh catalyst (i.e., regeneration of the catalyst).⁶⁾ This work was partially supported by a Grant-in-Aid from the Ministry of Education, Science and Culture. ## References - 1) A. T. Ashcroft, A. K. Cheetham, J. S. Foord, M. L. H. Green, C. P. Grey, A. J. Murrell, and P. D. F. Vernon, *Nature*, **344**, 319 (1990). - 2) P. D. F. Vernon, M. L. H. Green, A. K. Cheetham, and - A. T. Ashcroft, Catal. Lett., 6, 181 (1990). - 3) R. H. Jones, A. T. Ashcroft, D. Waller, A. K. Cheetham, - and J. M. Thomas, *Catal. Lett.*, **8**, 169 (1991). 4) S. Umeda, J. Nakamura, S. Ito, K. Kunimori, and T. Uchijima, Proc. of the 66th Annual Meeting of Catalysis Society of Japan, Hiroshima, 1990, Abstr., p. 314. - 5) J. Nakamura, S. Umeda, K. Kubushiro, K. Kunimori, - and T. Uchijima, submitted to J. of Petroleum Society of Japan. - 6) Z. Hu, T. Wakasugi, A. Maeda, K. Kunimori, and T. Uchijima, *J. Catal.*, **127**, 276 (1991). - 7) K. Sato, S. Umeda, J. Nakamura, K. Kunimori, and T. Uchijima, Proc. of the 63th Annual Meeting of Chemical Society of Japan, Osaka, 1992, Abstr., I, p. 177.