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Abstract: A newly improved synthesis of a dibenzodioxocinone
CETP inhibitor is described. Key features of the synthetic route in-
clude a chiral ligand induced alkyl addition to aldehyde and the use
of triethylborane for improved selective alkylation of brominated
phenyl ring.

Key words: total synthesis, asymmetric synthesis, natural prod-
ucts, inhibitors, drugs

The natural product penicillide {11-hydroxy-3-[(1S)-1-
hydroxy-3-methylbutyl]-4-methoxy-9-methyl-5H,7H-di-
benzo[b,g][1,5]dioxocin-5-one, Figure 1} is a dibenzo-
dioxocinone first reported by Sassa et al.1 Derivatives of
penicillide were reported to have a variety of biological
activities including lipid lowering,2 ACAT inhibition,3

oxytocin antagonism,4 and antihypertensive potential.5

Recently, certain derivatives of dibenzodioxocinone were
found to be a new class of CETP (cholesterol ester transfer
protein) inhibitors.6 Inhibition of CETP can lead to an in-
creased level of high-density lipoprotein cholesterol
(HDL-C) and is an alternative way to prevent coronary
heart disease as opposed to lowering the level of low-
density lipoprotein cholesterol (LDL-C).7 In particular,
compound 1 was reported to be a promising candidate for
in vivo study with an IC50 of 15 nM toward CETP inhibi-
tion and long plasma stability.6

Figure 1

The original synthesis of 1 was a 17-step protocol with an
overall yield of 0.1%, starting from 5-methylsalicylic
acid.8 We previously developed an 15-step route with a
much better overall yield of 1.6%.9 In this work, we report
a further improved procedure that combines early intro-

duction of the chiral functional group and borane-based
alkylation to reach an overall yield of 4.5%.

The overall synthetic route is described in Scheme 1.
Starting from 2, aldehyde 3 can be obtained in seven steps
with an overall yield of 24.2%, following the procedures
described before.8,9 Of these seven steps, the first three
steps to arrive at 3-benzyloxy-5-methylsalicylic acid are
identical to the original route developed by Bayer Health-
Care AG.8 However, in our hand, we performed the reac-
tions at kg scale and achieved a combined yield of 61.3%
as compared to a 18.3% yield at gram scale reported in the
original patent.8 The desired chlorine atom was intro-
duced during this stage,9 marking a difference between
our work and the original route.

In our previous work, alkyl addition to aldehyde 3 was
carried out in a racemic manner. As a consequence, chiral
separation of intermediate enantiomers is required at
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Table 1 Chiral Amino Alcohol Induced Asymmetric Addition

Amino alcohol 4 Isolated yield of 5 (%) ee (%)

4a

64 92

4b

66 86

4c

60 >99
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58 95

4e

50 96

4f

46 82

NMe2

OH

NMe2

OH

NMe2

OH

N
H

Ph

Ph

OH

N

Ph

Ph

OH

Ph

N

OH

Ph

Ph

D
ow

nl
oa

de
d 

by
: U

ni
ve

rs
ity

 o
f  

Ill
in

oi
s.

 C
op

yr
ig

ht
ed

 m
at

er
ia

l.



LETTER Dibenzodioxocinone Synthesis 2689

Synlett 2009, No. 16, 2688–2690 © Thieme Stuttgart · New York

some stage before reaching the final product 1. This draw-
back not only wastes starting material and lowers the
overall yield, but also makes it much harder to adapt the
procedure for potential large-scale production. Therefore,
we decided to explore asymmetric alkyl addition condi-
tions in hope to discover protocols that can produce the
desired S-enantiomer in high yield and avoid chiral sepa-
ration procedures.

We explored a variety of chiral amino alcohols 4 to induce
asymmetric addition of 2,2-dimethylpropyl zinc to alde-
hyde 3. The results are summarized in Table 1. It is grati-
fying to find that 4c can induce the formation of 5
exclusively with an acceptable yield of 60%.10 Figure 2
shows the optical purity of 5 by chiral chromatography.

From 5 to 10, the procedures are identical to our previous
work.9 It is worth noting that in spite of the presence of the
chlorine atom, the benzyl protection can be efficiently re-
moved using Pd/C-catalyzed hydrogenation in EtOAc and
EtOH to afford 9 with a high yield of 95%, a substantial
improvement over the original protocol using FeCl3 with
a 65% yield.8

From compound 10, introduction of the ethyl group was
achieved using triethylborane and Pd(dppf)2Cl2 to afford
11 with a yield of 65%.11 This is improved over our previ-
ous protocol that utilized the Negishi coupling12 with a
40% yield,9 as well as the original Bayer protocol that uti-

lized the Stille coupling13 with a 22% yield.8 The forma-
tion of the target compound 1 was finally achieved after a
99.6% acylation step.

In summary, compound 1 as a potent CETP inhibitor was
prepared starting from 2 with a significantly improved
overall yield of 4.5% over previous methods.8,9 With a
highly enantioselective protocol for asymmetric alkyla-
tion of aldehyde 3, our synthetic route avoids chiral sepa-
ration of intermediates. Combined with other
improvements to optimize individual reaction steps, this
improved synthetic sequence opens up the opportunity to
large-scale production of 1 or its analogues.
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Scheme 1 Improved synthetic route for compound 1
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20 +22.5 (c 1.0, CHCl3; >99% 
ee, as analyzed by chiral HPLC, see Figure 2). ESI-MS: 
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Figure 2 Optical purity of 5 analyzed using a Chiralpak AD-H
column, mobile phase: n-hexane–EtOH (80:20). Top: compound 5;
bottom: mixture of 5 and a racemic sample based on our previous
work.9
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