

Tetrahedron Letters 41 (2000) 1439-1442

TETRAHEDRON LETTERS

Hydrogen peroxide oxidation of aldehydes to carboxylic acids: an organic solvent-, halide- and metal-free procedure

Kazuhiko Sato, Mamoru Hyodo, Junko Takagi, Masao Aoki and Ryoji Noyori *

Department of Chemistry and Research Center for Materials Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan

Received 8 November 1999; revised 29 November 1999; accepted 1 December 1999

Abstract

Aqueous hydrogen peroxide oxidizes aldehydes to carboxylic acids under aqueous/organic biphasic conditions without affecting olefinic or alcoholic functions © 2000 Elsevier Science Ltd. All rights reserved.

Keywords: aldehydes; Baeyer-Villiger reaction; carboxylic acids; hydrogen peroxide; oxidation; quaternary ammonium salts.

Despite the growing awareness of the need for 'green chemistry', many chemists still use environmentally unacceptable reagents or unnecessarily sophisticated conditions for the oxidation of aldehydes.^{1–3} Certain aldehydes can be oxidized to carboxylic acids with 3–60% aqueous H_2O_2 without organic solvents or metallic catalysts. Here we propose a very simple procedure which is suitable for medium and large scale reactions.

Ignoring the ability of aqueous H_2O_2 to oxidize aldehydes, tremendous efforts have been made to develop metal-based catalysts⁴ and inorganic⁵ or organic promoters⁶ for the oxidation of aldehydes. In 1941, Späth found that H_2O_2 reacts with dodecanal to form a perhydrate, which decomposes slowly at 120° C to give dodecanoic acid.⁷ Since then aqueous H₂O₂ has been considered to have a weak ability to oxidize aldehydes. Some benzaldehyde derivatives can be converted to methyl benzoates with 31% H₂O₂ in methanol containing 38 mol% H₂SO₄,⁸ and a patent claimed that 35% H₂O₂ in dioxane containing HBr oxidizes aldehydes to carboxylic acids.⁹ However, the general capability of H₂O₂ to oxidize aldehydes to carboxylic acids has not yet been reported explicitly in academic literature. During our recent study of the alcohol dehydrogenation reaction,¹⁰ we found that the oxidation of some aliphatic and aromatic aldehydes with H₂O₂ proceeds under aqueous/organic biphasic conditions without organic solvents, halides, or metal catalysts (Scheme 1). The reaction is catalyzed simply by an acid. Thus, when a mixture of octanal, 30% H_2O_2 , and $[CH_3(n-C_8H_{17})_3N]HSO_4$ (QHSO₄) in a 200:220:1 molar ratio was heated at 90°C for 2 h with magnetic stirring at 1000 rpm, octanoic acid was obtained with a yield of 82%. Without stirring under otherwise identical conditions, the yield was lowered to 73%. The reaction at 70°C gave the carboxylic acid with a yield of only 4%. When a biphasic mixture of octanal and 30% H₂O₂ was stirred at 1000 rpm at 90°C without the acidic quaternary ammonium salt, octanoic acid was produced in a yield

^{*} Corresponding author.

^{0040-4039/00/\$ -} see front matter © 2000 Elsevier Science Ltd. All rights reserved. P11: S0040-4039(99)02310-2

1440

of only 30%.¹¹ Decreased lipophilicity of the catalysts tends to lower the reaction rate. The reaction of octanal and 30% H_2O_2 at 90°C for 2 h in the presence of other acids (aldehyde: H_2O_2 :acid=200:220:1) gave yields of 47% with [(*n*-C₄H₉)₄N]HSO₄, 36% with H₂SO₄, 55% with HBr, 39% with HCl, 41% with *n*-C₁₂H₂₅SO₃H, and 34% with Nafion-H. Thus, the use of a lipophilic, acidic Q salt as catalyst¹² is the key to efficient biphasic oxidation. As oxidant, 3% H_2O_2 can also be used. Reaction with 60% H_2O_2 at 90°C takes place faster, but such conditions are not recommended because of the production of some peroxy acids.

RCHO + 30% H₂O₂
$$\xrightarrow{[CH_3(n-C_8H_17)_3N]HSO_4}$$
 RCO₂H
Scheme 1.

Examples of the simple oxidation are given in Table 1. Although the reaction was performed normally in a 5–75 mmol range with substrate/catalyst ratios of 100 to 1000, no technical problems in scalingup are foreseen. The reaction of 100 g of octanal (aldehyde:H₂O₂:QHSO₄=200:300:1, 90°C, 2 h, 1000 rpm) gave octanoic acid in a yield of 81% after distillation (85% by ¹H NMR).¹³ α -Branched aldehydes were converted to acids with lower yields. Benzaldehyde derivatives with an electron-withdrawing group produced the benzoic acids in reasonable yields. The reaction of melted *p*-nitrobenzaldehyde (m.p. 105°C) under the standard conditions gave *p*-nitrobenzoic acid with a yield of 93%. If necessary, toluene can be employed as a solvent. Unfortunately, *p*-methoxybenzaldehyde afforded the carboxylic acid with a yield of only 9%.

Because of the absence of metallic catalysts, olefinic and alcoholic (primary and secondary) functions survive the oxidation conditions (Table 1). 10-Undecenal (1) was converted to 10-undecenoic acid with a yield of 85% with 30% H_2O_2 and QHSO₄ (substrate: H_2O_2 :Q salt=200:220:1, 90°C, 2 h, 1000 rpm).¹⁴ Under the same conditions, 11-hydroxyundecanal (2) selectively gave 11-hydroxyundecanoic acid with a yield of 75%. Even *p*-(1-hydroxyethyl)benzaldehyde (3) which has a highly reactive alcoholic moiety was oxidized solely at the aldehyde group to give the hydroxy carboxylic acid with a yield of 79%.

We consider that the oxidations proceed via perhydrate intermediates. The acidic Q salt facilitates the addition of H_2O_2 to aldehydes in the organic layer and, more importantly, the elimination of water from the tetrahedral intermediate via a Baeyer–Villiger type fragmentation. This view is consistent with the structure-dependent efficiency of the reaction. Straight-chain aliphatic aldehydes are cleanly converted to carboxylic acids, because the perhydrates eliminate water by selective hydride migration. Whereas, secondary and tertiary *R* groups tend to migrate competitively with hydride, resulting in the formation of formate products (Scheme 2). In fact, oxidation of 2-ethylhexanal with 30% H_2O_2 and QHSO₄ under the standard conditions gave 3-heptanol and 3-heptanone with a total yield of 11% together with the desired 2-ethylhexanoic acid with a yield of 65%. The efficiency observed with *para*-substituted benzaldehydes also agrees with this mechanism.

Aqueous H_2O_2 is a cheap, safe oxidant which produces only water as a coproduct. Although its ability to oxidize aldehydes has been ignored, it is very useful for this purpose. Changing current practices to a process using this environmentally friendly oxidant is highly desirable.

aldehyde		H ₂ O ₂	[CH ₃ (<i>n</i> -C ₈ H ₁₇) ₃ N]HSO ₄	time	% yield of
structure	mmol	mmol (equiv)	$mmol(S/C)^{b}$	h	carboxylic acid ^c
C ₆ H ₅ (CH ₂) ₂ CHO	745 74.5	820 (1.1) 82 (1.1)	3.7 (200) 0.37 (200)	2 2	73 ^d 78 ^d
	74.5	82 (1.1)	0.075 (1000)	4	77"
<i>n</i> -C ₇ H ₁₅ CHO	780	1170 (1.5)	3.9 (200)	2	81, ^d 85 ^e
	10	11 (1.1)	0.05 (200)	2	82°
	10	11 (1.1)	0.05 (200)	1	7358
<i>n</i> -C ₄ H ₉ CH(C ₂ H ₅)CHO	10	11 (1.1)	0.05 (200)	2	65
(CH ₃) ₃ CCHO	10	11 (1.1)	0.05 (200)	2	40 ^e
C ₆ H ₅ CH(CH ₃)CHO	10	11 (1.1)	0.05 (200)	2	17
СН30	5	12.5 (2.5)	0.05 (100)	3	9
о Н	5	12.5 (2.5)	0.05 (100)	3	41
С	5	12.5 (2.5)	0.05 (100)	3	85
Br	5	12.5 (2.5)	0.05 (100)	3	78
CI	5	12.5 (2.5)	0.05 (100)	3	76
ОН	5	12.5 (2.5)	0.05 (100)	3	93 ^{<i>h</i>}
O ₂ N	5	12.5 (2.5)	0.05 (100)	3	88^{ij}
$CH_2=CH(CH_2)_8CHO(1)$	10	11 (1.1)	0.05 (200)	2	85 ^e
HO(CH ₂) ₁₀ CHO (2)	5	5.5 (1.1)	0.025 (200)	2	75 ^e
<i>p</i> -[CH ₃ CH(OH)]C ₆ H ₄ CHO (3)) 5	12.5 (2.5)	0.05 (100)	3	79 ^k

 Table 1

 Hydrogen peroxide oxidation of aldehydes to carboxylic acids^a

^{*a*} Unless otherwise stated, reactions were run using 30% H_2O_2 at 90 °C. ^{*b*} Substrate/catalyst molar ratio. ^{*c*} Determined by GC analysis. Carboxylic acids were analyzed after conversion to their methyl esters with trimethylsilyldiazomethane. Conversion of aldehydes was >90%. ^{*d*} Isolated by distillation. ^{*e*} Determined by ¹H NMR. ^{*f*} Reaction with 60% H_2O_2 . ^{*g*} Contaminated with 6% of the peroxy acid. ^{*h*} Determined by HPLC analysis. ^{*i*} Toluene (2 mL) was used as solvent. ^{*j*} Isolated by recrystallization from ethanol. ^{*k*} Isolated by silica-gel column chromatography.

Acknowledgements

This work was supported by the Ministry of Education, Science, Sports and Culture of Japan (No. 07CE2004).

References

- (a) Hollingworth, G. J. In *Comprehensive Organic Functional Group Transformations*; Katritzky, A. R.; Meth-Cohn, O.; Rees, C. W.; Pattenden, G., Eds.; Elsevier Science: Oxford, 1995; Vol. 5, pp. 23–120. (b) Hudlicky, M. *Oxidations in Organic Chemistry*; ACS Monograph Ser. 186, American Chemical Society: Washington, DC, 1990; pp. 174–184. (c) Larock, R. C. *Comprehensive Organic Transformations*; VCH Publishers: New York, 1989; pp. 838–841.
- (a) [DMSO+(CH₃CO)₂O+NaHSO₃] Wuts, P. G.; Bergh, C. L. *Tetrahedron Lett.* **1986**, *27*, 3995–3998. (b) [AgO+NaCN] Corey, E. J.; Gilman, N. W.; Ganem, B. J. Am. Chem. Soc. **1968**, *90*, 5616–5617. (c) [Oxone] Kennedy, R. J.; Stock, A. M. J. Org. Chem. **1960**, *25*, 1901–1906. (d) [KMnO₄] Ruhoff, J. R. Org. Synth., Coll. Vol. **1943**, *2*, 315–316. (e) [K₂Cr₂O₇] Hurd, C. D.; Garrett, J. W.; Osborne, E. N. J. Am. Chem. Soc. **1933**, *55*, 1082–1084. (f) [HNO₃] Moureu, C.; Chaux, R. Org. Synth., Coll. Vol. **1932**, *1*, 166–169.
- 3. For Co-catalyzed oxidation using O₂, see: Yamada, T.; Rhode, O.; Takai, T.; Mukaiyama, T. Chem. Lett. 1991, 5-8.
- 4. (a) [[CH₃(*n*-C₈H₁₇)₃N]₃PO₄[W(O)(O₂)₂]₄] Venturello, C.; Gambaro, M. J. Org. Chem. **1991**, 56, 5924–5931. (b) [C₆H₅SeO₂H] Choi, J.-K.; Chang, Y.-K.; Hong, S. Y. Tetrahedron Lett. **1988**, 29, 1967–1970. (c) [(NH₄)₆Mo₇O₂₄·2H₂O] Trost, B. M.; Masuyama, Y. Tetrahedron Lett. **1984**, 25, 173–176.
- 5. [NaClO₂] Dalcanale, E.; Montanari, F. J. Org. Chem. 1986, 51, 567–569.
- (a) [HCO₂H] Dodd, R. H.; Hyaric, M. L. Synthesis 1993, 295–297. (b) [(CF₃)₂CO] Ganem, B.; Heggs, R. P.; Biloski, A. J.; Schwartz, D. R. *Tetrahedron Lett.* 1980, 21, 685–688.
- 7. Späth, E.; Pailer, M.; Schmid, M. Chem. Ber. 1941, 74, 1552–1556.
- 8. Matsumoto, M.; Kobayashi, H.; Hotta, Y. J. Org. Chem. 1984, 49, 4740-4741.
- 9. Rémi, L.; Pierre, L.; Xiao, L.; Catherine, H. European Patent, 1991, 0 424 242 A2.
- (a) Sato, K.; Aoki, M.; Takagi, J.; Zimmermann, K.; Noyori, R. Bull. Chem. Soc. Jpn. 1999, 72, 2287–2306. (b) Sato, K.; Takagi, J.; Aoki, M.; Noyori, R. Tetrahedron Lett. 1998, 39, 7549–7552. (c) Sato, K.; Aoki, M.; Takagi, J.; Noyori, R. J. Am. Chem. Soc. 1997, 119, 12386–12387. (d) Sato, K.; Aoki, M.; Noyori, R. Science 1998, 281, 1646–1647.
- Venturello reported that heating a mixture of octanal and 40% H₂O₂ (1:1.2 mol ratio) at 90°C for 1 h gave octanoic acid with a yield of 34%, while the presence of 0.5% [CH₃(n-C₈H₁₇)₃N]₃PO₄[W(O)(O₂)₂]₄ increased the yield to 87%.^{4a}
- 12. When a mixture of [CH₃(*n*-C₈H₁₇)₃N]HSO₄ (0.3 mmol), toluene (10 mL), and water (10 mL) in a 20 mm diameter test tube was mechanically stirred at 1000 rpm for 2 h at room temperature and then allowed to stand for 1 h, the acid was partitioned in toluene and water in a ratio of about 7:3. No concentration gradient was seen in both organic and aqueous phases. ¹H NMR analysis showed that 1 mL of D₂O dissolves 0.068 mmol of [CH₃(*n*-C₈H₁₇)₃N]HSO₄ at 25°C.
- 13. Typical procedure: A 500 mL, round-bottomed flask equipped with a magnetic stirring bar and a reflux condenser was charged with 1.82 g (3.90 mmol) of [CH₃(*n*-C₈H₁₇)₃N]HSO₄ and 133 g (1.17 mol) of aqueous 30% H₂O₂. The mixture was vigorously stirred at room temperature for 10 min, and then 100 g (780 mmol) of octanal was added. The biphasic mixture was heated at 90°C with stirring at 1000 rpm for 2 h and then cooled to room temperature. The organic phase was separated, washed with 100 mL of saturated aqueous Na₂S₂O₃, and distilled through a short column to give 91.5 g (81%) of octanoic acid as a colorless liquid, b.p. 114.0–116.0°C/3 mmHg.
- For H₂O₂ epoxidation of olefins under aqueous/organic biphasic conditions, see: (a) Sato, K.; Aoki, M.; Ogawa, M.; Hashimoto, T.; Noyori, R. *J. Org. Chem.* **1996**, *61*, 8310–8311. (b) Sato, K.; Aoki, M.; Ogawa, M.; Hashimoto, T.; Panyella, D.; Noyori, R. *Bull. Chem. Soc. Jpn.* **1997**, *70*, 905–915.