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Hydrogen peroxide oxidation of aldehydes to carboxylic acids:
an organic solvent-, halide- and metal-free procedure
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Abstract

Aqueous hydrogen peroxide oxidizes aldehydes to carboxylic acids under agueous/organic biphasic conditions
without affecting olefinic or alcoholic functions © 2000 Elsevier Science Ltd. All rights reserved.
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Despite the growing awareness of the need for ‘green chemistry’, many chemists still use environmen-
tally unacceptable reagents or unnecessarily sophisticated conditions for the oxidation of aléehydes.
Certain aldehydes can be oxidized to carboxylic acids with 3—60% aquegDs \Without organic
solvents or metallic catalystslere we propose a very simple procedure which is suitable for medium
and large scale reactions.

Ignoring the ability of aqueous D, to oxidize aldehydes, tremendous efforts have been made to
develop metal-based catalystmnd inorganie or organic promotefsfor the oxidation of aldehydes. In
1941, Spath found that 4@, reacts with dodecanal to form a perhydrate, which decomposes slowly at
120°C to give dodecanoic acidSince then aqueous,®, has been considered to have a weak ability to
oxidize aldehydes. Some benzaldehyde derivatives can be converted to methyl benzoates wigb31% H
in methanol containing 38 mol%33$0,,8 and a patent claimed that 35%®, in dioxane containing HBr
oxidizes aldehydes to carboxylic acitislowever, the general capability of,B, to oxidize aldehydes
to carboxylic acids has not yet been reported explicitly in academic literature. During our recent study
of the alcohol dehydrogenation reactiftwe found that the oxidation of some aliphatic and aromatic
aldehydes with KO, proceeds under aqueous/organic biphasic conditions without organic solvents,
halides, or metal catalysts (Scheme 1). The reaction is catalyzed simply by an acid. Thus, when a mixture
of octanal, 30% HO-, and [CH;(n-CgH17)3sNJHSO4 (QHS(,) in a 200:220:1 molar ratio was heated at
90°C for 2 h with magnetic stirring at 2000 rpm, octanoic acid was obtained with a yield of 82%. Without
stirring under otherwise identical conditions, the yield was lowered to 73%. The reaction at 70°C gave the
carboxylic acid with a yield of only 4%. When a biphasic mixture of octanal and 39@p i/as stirred
at 1000 rpm at 90°C without the acidic quaternary ammonium salt, octanoic acid was produced in a yield
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of only 30%?! Decreased lipophilicity of the catalysts tends to lower the reaction rate. The reaction of
octanal and 30% 0, at 90°C for 2 h in the presence of other acids (aldehyg®@x-hcid=200:220:1)

gave yields of 47% with [{-C4Hg)4NJHSO4, 36% with SOy, 55% with HBr, 39% with HCI, 41%

with n-C1oH25SOsH, and 34% with Nafion-H. Thus, the use of a lipophilic, acidic Q salt as catéligst

the key to efficient biphasic oxidation. As oxidant, 3% can also be used. Reaction with 60%+

at 90°C takes place faster, but such conditions are not recommended because of the production of some
peroxy acids.

[CH3(n-CgH,7)aN]HSO4

RCHO + 30% Hq0, e

RCO,H

Scheme 1.

Examples of the simple oxidation are given in Table 1. Although the reaction was performed normally
in a 5—-75 mmol range with substrate/catalyst ratios of 100 to 1000, no technical problems in scaling-
up are foreseen. The reaction of 100 g of octanal (aldehyd@IPHS=200:300:1, 90°C, 2 h, 1000
rpm) gave octanoic acid in a yield of 81% after distillation (85%'ByNMR).13 -Branched aldehydes
were converted to acids with lower yields. Benzaldehyde derivatives with an electron-withdrawing group
produced the benzoic acids in reasonable yields. The reaction of mehdtbbenzaldehyde (m.p.
105°C) under the standard conditions gpvaitrobenzoic acid with a yield of 93%. If necessary, toluene
can be employed as a solvent. Unfortunatphethoxybenzaldehyde afforded the carboxylic acid with
ayield of only 9%.

Because of the absence of metallic catalysts, olefinic and alcoholic (primary and secondary) functions
survive the oxidation conditions (Table 1). 10-Undecefdaas converted to 10-undecenoic acid with
a yield of 85% with 30% HO, and QHSQ (substrate:HO,:Q salt=200:220:1, 90°C, 2 h, 1000 rpi).
Under the same conditions, 11-hydroxyundecaBptélectively gave 11-hydroxyundecanoic acid with
a yield of 75%. Evemp-(1-hydroxyethyl)benzaldehyd&)(which has a highly reactive alcoholic moiety
was oxidized solely at the aldehyde group to give the hydroxy carboxylic acid with a yield of 79%.

0
0 0

H
\/\/\/\/\)J\H HO/\/\/\/\/\)J\H HO

1 2 3

We consider that the oxidations proceed via perhydrate intermediates. The acidic Q salt facilitates the
addition of O, to aldehydes in the organic layer and, more importantly, the elimination of water from
the tetrahedral intermediate via a Baeyer-Villiger type fragmentation. This view is consistent with the
structure-dependent efficiency of the reaction. Straight-chain aliphatic aldehydes are cleanly converted
to carboxylic acids, because the perhydrates eliminate water by selective hydride migration. Whereas,
secondary and tertiafg groups tend to migrate competitively with hydride, resulting in the formation of
formate products (Scheme 2). In fact, oxidation of 2-ethylhexanal with 3@ ldnd QHSQ under the
standard conditions gave 3-heptanol and 3-heptanone with a total yield of 11% together with the desired
2-ethylhexanoic acid with a yield of 65%. The efficiency observed witta-substituted benzaldehydes
also agrees with this mechanism.

Aqueous HOs is a cheap, safe oxidant which produces only water as a coproduct. Although its ability
to oxidize aldehydes has been ignored, it is very useful for this purpose. Changing current practices to a
process using this environmentally friendly oxidant is highly desirable.



Table 1
Hydrogen peroxide oxidation of aldehydes to carboxylic &cids

aldehyde H,0, [CH3(n-CgH17)sNJHSOy4 time % yield of
structure mmol mmol (equiv) mmol (S/C)b h  carboxylic acid®
C4H5(CH,),CHO 745 820 (1.1) 3.7 (200) 2 734
745 82(1.1) 0.37 (200) 2 78¢
74.5 82(1.1) 0.075 (1000) 4 77
7-C;H,sCHO 780 1170 (1.5) 3.9 (200) 2 81,% 85¢
10 11 (1.1 0.05 (200) 2 82°
10 11 (L1y 0.05 (200) 1 73%8
1-C,HyCH(C,H5)CHO 10 11 (L.1) 0.05 (200) 2 65
(CH;);CCHO 10 11(1.1) 0.05 (200) 2 40°¢
CgHsCH(CH;)CHO 10 11 (1.1) 0.05 (200) 2 17
(0]
D)J\H 5 12.5 (2.5) 0.05 (100) 3 9
CHzO
[¢]
/@/“\H 5 12.5 (2.5) 0.05 (100) 3 41
(o]
@/LH 5 12.5 (2.5) 0.05 (100) 3 85
[e]
/©)\H 5 12.5 (2.5) 0.05 (100) 3 78
Br
o
Q)j\H 5 12.5 (2.5) 0.05 (100) 3 76
Cl
(o]

D)\H 12.5 (2.5) 0.05 (100) 3 93"
0N 5 12.5 (2.5) 0.05 (100) 3 88"/
CH,=CH(CH,)sCHO (1) 10 11 (1.1) 0.05 (200) 2 85°¢
HO(CH3)1CHO (2) 5 5.5(1.1) 0.025 (200) 2 75¢
p-[CH;CH(OH)]C4H,CHO 3) S 12.5 (2.5) 0.05 (100) 3 79%

¢ Unless otherwise stated, reactions were run using 30% H,0, at 90 °C. ? Substrate/catalyst molar ratio.

¢ Determined by GC analysis. Carboxylic acids were analyzed after conversion to their methyl esters with

trimethylsilyldiazomethane. Conversion of aldehydes was >90%. 4 Isolated by distillation. ® Determined
by 'H NMR. / Reaction with 60% H,0,. & Contaminated with 6% of the peroxy acid. " Determined by
HPLC analysis. ‘ Toluene (2 mL) was used as solvent. 7 Isolated by recrystallization from ethanol. k

Isolated by silica-gel column chromatography.
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o] HO OOH 0
R)k oM = g N —:;0 R/U\OH
R~ |- H,0
)Cj)\ L i + ROH
H” TOR H™ “OH
Scheme 2.
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