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Hydrogen peroxide oxidation of aldehydes to carboxylic acids:
an organic solvent-, halide- and metal-free procedure
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Abstract

Aqueous hydrogen peroxide oxidizes aldehydes to carboxylic acids under aqueous/organic biphasic conditions
without affecting olefinic or alcoholic functions © 2000 Elsevier Science Ltd. All rights reserved.
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Despite the growing awareness of the need for ‘green chemistry’, many chemists still use environmen-
tally unacceptable reagents or unnecessarily sophisticated conditions for the oxidation of aldehydes.1–3

Certain aldehydes can be oxidized to carboxylic acids with 3–60% aqueous H2O2 without organic
solvents or metallic catalysts.Here we propose a very simple procedure which is suitable for medium
and large scale reactions.

Ignoring the ability of aqueous H2O2 to oxidize aldehydes, tremendous efforts have been made to
develop metal-based catalysts4 and inorganic5 or organic promoters6 for the oxidation of aldehydes. In
1941, Späth found that H2O2 reacts with dodecanal to form a perhydrate, which decomposes slowly at
120°C to give dodecanoic acid.7 Since then aqueous H2O2 has been considered to have a weak ability to
oxidize aldehydes. Some benzaldehyde derivatives can be converted to methyl benzoates with 31% H2O2

in methanol containing 38 mol% H2SO4,8 and a patent claimed that 35% H2O2 in dioxane containing HBr
oxidizes aldehydes to carboxylic acids.9 However, the general capability of H2O2 to oxidize aldehydes
to carboxylic acids has not yet been reported explicitly in academic literature. During our recent study
of the alcohol dehydrogenation reaction,10 we found that the oxidation of some aliphatic and aromatic
aldehydes with H2O2 proceeds under aqueous/organic biphasic conditions without organic solvents,
halides, or metal catalysts (Scheme 1). The reaction is catalyzed simply by an acid. Thus, when a mixture
of octanal, 30% H2O2, and [CH3(n-C8H17)3N]HSO4 (QHSO4) in a 200:220:1 molar ratio was heated at
90°C for 2 h with magnetic stirring at 1000 rpm, octanoic acid was obtained with a yield of 82%. Without
stirring under otherwise identical conditions, the yield was lowered to 73%. The reaction at 70°C gave the
carboxylic acid with a yield of only 4%. When a biphasic mixture of octanal and 30% H2O2 was stirred
at 1000 rpm at 90°C without the acidic quaternary ammonium salt, octanoic acid was produced in a yield
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of only 30%.11 Decreased lipophilicity of the catalysts tends to lower the reaction rate. The reaction of
octanal and 30% H2O2 at 90°C for 2 h in the presence of other acids (aldehyde:H2O2:acid=200:220:1)
gave yields of 47% with [(n-C4H9)4N]HSO4, 36% with H2SO4, 55% with HBr, 39% with HCl, 41%
with n-C12H25SO3H, and 34% with Nafion-H. Thus, the use of a lipophilic, acidic Q salt as catalyst12 is
the key to efficient biphasic oxidation. As oxidant, 3% H2O2 can also be used. Reaction with 60% H2O2

at 90°C takes place faster, but such conditions are not recommended because of the production of some
peroxy acids.

Scheme 1.

Examples of the simple oxidation are given in Table 1. Although the reaction was performed normally
in a 5–75 mmol range with substrate/catalyst ratios of 100 to 1000, no technical problems in scaling-
up are foreseen. The reaction of 100 g of octanal (aldehyde:H2O2:QHSO4=200:300:1, 90°C, 2 h, 1000
rpm) gave octanoic acid in a yield of 81% after distillation (85% by1H NMR).13 �-Branched aldehydes
were converted to acids with lower yields. Benzaldehyde derivatives with an electron-withdrawing group
produced the benzoic acids in reasonable yields. The reaction of meltedp-nitrobenzaldehyde (m.p.
105°C) under the standard conditions gavep-nitrobenzoic acid with a yield of 93%. If necessary, toluene
can be employed as a solvent. Unfortunately,p-methoxybenzaldehyde afforded the carboxylic acid with
a yield of only 9%.

Because of the absence of metallic catalysts, olefinic and alcoholic (primary and secondary) functions
survive the oxidation conditions (Table 1). 10-Undecenal (1) was converted to 10-undecenoic acid with
a yield of 85% with 30% H2O2 and QHSO4 (substrate:H2O2:Q salt=200:220:1, 90°C, 2 h, 1000 rpm).14

Under the same conditions, 11-hydroxyundecanal (2) selectively gave 11-hydroxyundecanoic acid with
a yield of 75%. Evenp-(1-hydroxyethyl)benzaldehyde (3) which has a highly reactive alcoholic moiety
was oxidized solely at the aldehyde group to give the hydroxy carboxylic acid with a yield of 79%.

We consider that the oxidations proceed via perhydrate intermediates. The acidic Q salt facilitates the
addition of H2O2 to aldehydes in the organic layer and, more importantly, the elimination of water from
the tetrahedral intermediate via a Baeyer–Villiger type fragmentation. This view is consistent with the
structure-dependent efficiency of the reaction. Straight-chain aliphatic aldehydes are cleanly converted
to carboxylic acids, because the perhydrates eliminate water by selective hydride migration. Whereas,
secondary and tertiaryRgroups tend to migrate competitively with hydride, resulting in the formation of
formate products (Scheme 2). In fact, oxidation of 2-ethylhexanal with 30% H2O2 and QHSO4 under the
standard conditions gave 3-heptanol and 3-heptanone with a total yield of 11% together with the desired
2-ethylhexanoic acid with a yield of 65%. The efficiency observed withpara-substituted benzaldehydes
also agrees with this mechanism.

Aqueous H2O2 is a cheap, safe oxidant which produces only water as a coproduct. Although its ability
to oxidize aldehydes has been ignored, it is very useful for this purpose. Changing current practices to a
process using this environmentally friendly oxidant is highly desirable.
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Table 1
Hydrogen peroxide oxidation of aldehydes to carboxylic acidsa
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Scheme 2.
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