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Metal and metal sulfide nanoparticles are prepared using a method that is based on the rapid expansion of
supercritical fluid solution (RESS) into a liquid solution and characterized using transmission electron
microscopy and X-ray diffraction methods. The nanoparticles form solution-like stable suspensions in the
presence of a stabilization agent such as polyiyl-2-pyrrolidone) (PVP) polymer. The stable suspensions
allow systematic nonlinear optical measurements. The nanocrystalline silver metal and silver sulfide particles
in PVP polymer-stabilized ethanol suspensions of high linear transmittance exhibit excellent optical limiting
properties, with the optical limiting responses toward nanosecond laser pulses at 532 nm being much stronger
than those of benchmark materials [60]fullerene and chloroaluminum phthalocyanine in solution. A comparison
of the results with those of stable suspensions of other nanopatrticles including cadmium sulfide, lead sulfide,
and nickel suggests that the optical limiting properties are unique to the nanoscopic silver-containing materials.
Mechanistic issues concerning the optical limiting performance of the silver-containing nanocrystalline particles
are discussed, and a nonlinear absorption mechanism is proposed.

Introduction issues on the optical limiting behavior of the nanoparticles are

) ) ) ) ) ) discussed.
Nonlinear optical materials for the manipulation of optical

beam; in the passive methoq have received much recemExperimental Section

attention! There is great current interest in the development of

organic and inorganic optical limiters for eye protection and  Materials. Silver nitrate (AgNQ), cadmium nitrate tetra-
optical switching application’s:* Among potent optical limiters ~ hydrate (Cd(N@)2:4H20), and sodium sulfide (N&) were
are materials that show strong nonlinear absorptions (or reversedurchased from Aldrich. Lead nitrate (Pb(R)&) and nickel
saturable absorber$),such as metallophthalocyanings,  chloride hexahydrate (Nigl6H,O) were purchased from Fisher
fullerenes’~14 and mixed metal complexes and clustérs’? Scientific. Nickel chloride hexahydrate (Nig&6H,O) was dried
Systems exhibiting strong transient light scattering due to under vacuum at 100C for 16 h before use. [60]Fullereneds=
photoinduced thermal processes, such as carbon black susperRUrity >99.5%) was obtained from BuckyUSA, and chloroalu-
sion, have also been investigated extensively for their strong Minum phthalocyanine was purchased from Exciton. Both were
optical limiting responses over a broad wavelength ra8ge. used W|t_hout further pur|f|ca_t|on. Hydra2|r_1e and sodium
Recently, there have been several studies of the optical limiting Porohydride (NaBl) were obtained from Aldrich and used as
and nonlinear absorption properties of semiconductor nano-'¢ceived. Anhydrous ammonia - (purity-99.9999%) was
particles?t2* For example, it was report&that silver bromide purchased from Air Products and filtered before use. Dimeth-

particles trapped in nanosols exhibit interesting optical limiting yiformamide (DMF) an_d methanol were obtained from Mallinck-
characteristics. rodt and used as received. Absolute ethanol was purchased from

. Fisher Scientific. It was distilled over molecular sieves and

We have recently developed a versatile method for the fiiered before use. Water was deionized and purified by being
preparation of a series of polymer-protected metal and metal yasseq through a Labconco WaterPros water purification system.
sulfide nanoparticle3>2® The method is based on the rapid  pgly(N-vinyl-2-pyrrolidone) (PVP) of average molecular weight
expansion of supercritical fluid solution (RE$S¥into a liquid M, ~ 360000 was obtained from Sigma and used without
solution?>2® The nanoparticles thus produced are relatively fyrther purification.
narrowly distributed in size and form highly stable suspensions  \jeasurements The apparatus for the preparation of nano-
in the presence of polymer as a stabilization agent. The stablepaticies through the rapid expansion of supercritical fluid
suspensions of different metal and metal sulfide nanoparticles spjution (RESS) into a liquid solution process is illustrated in
have allowed a systematic investigation of optical limiting Figure 1. It consists of a syringe pump for pressure generation
properties of the nanoscopic materials under solution-like and pressure maintenance during RESS process and a gauge
conditions. The results show that silver-containing nanocrys- for monitoring the system pressure. The heating unit consists
talline particles in polymer-stabilized suspensions of high linear of a cylindrical solid copper block of high heat capacity in a
transmittance strongly limit nanosecond laser pulses at 532 nm.tube furnace. The copper block is wrapped with stainless steel
The optical limiting responses of the suspensions are in fact tubing coil and inserted tightly into a stainless steel tube to
significantly better than those of the benchmark materials ensure close contacts between the tubing coil and the copper
fullerene and metallophthalocyanine in solution. Mechanistic block for efficient heat transfer. The copper block/tubing coil
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Figure 1. Experimental setup for the preparation of nanoparticles based
on the rapid expansion of supercritical fluid solution (RESS) into a
liquid solution.

assembly is preheated to a set temperature before each RES
experiment. For solutions of high critical temperature fluids,

the syringe pump can be preheated to ensure that the solutio
reaches the designated temperature at the end of the tubing coi
and becomes thermally equilibrated before rapid expansion. The
expansion nozzle is a fused silica capillary hosted in a stainless
steel tubing, which is inserted into the RESS chamber containing
a room-temperature solution.

UV/vis absorption spectra were measured on a computer-
controlled Shimadzu UV-2101PC spectrophotometer. Diffuse
reflectance spectra were obtained using a Shimadzu UV-3100
spectrophotometer with ISR-3100 diffuse reflectance attachment.
Powder X-ray diffraction measurements were carried out on a
Scintag XDS-2000 powder diffraction system. Transmission
electron microscopy (TEM) images were obtained using a
Hitachi 600AB 100 kV transmission electron microscope.

The experimental setup for optical limiting measurements
consists of a Continuum Surelite-1 Q-switched Nd:YAG laser
operated in the single-shot mode. The second harmonic from
frequency doubling the infrared fundamental is isolated by use
of the Surelite harmonic separation package. The laser beam i
collimated, with the maximum energy at 532 nm of 160 mJ/
pulse ad a 5 nspulse width (fwhm). The laser pulse energy is
varied in the range of 10160 mJ/pulse using a waveplate
polarizer combination. With the laser beam diameter of 6 mm
the corresponding input energy densities for optical limiting
measurements are in the range of 0:08%7 J/cm. For higher
energy densities of up to 2.2 J/&nthe laser beam diameter is
reduced to 3 mm using a galilean style telescope, which consist:

is a Scientech Mentor MC2501 calorimeter controlled by a
Scientech MD10 meter. A quartz cuvette of 2 mm optical path
length was used in the optical limiting measurements.

Results and Discussion
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Figure 2. Absorption spectra of the nanocrystalline metal and metal

r§ulfide particles in stable suspensions.

|Into a room-temperature ethanol solution of,8425 mL, 0.7

mg/mL concentration). A silica capillary of 7Zm inner
diameter hosted in a stainless steel tubing by applying epoxy
resin was used as an expansion nozzle. The system pressure
was maintained at 3068500 psia during the RESS process.
The room-temperature solution in the RESS chamber (Figure
1) also contains 5 mg/mL of poljvinyl-2-pyrrolidone) (PVP)
polymer M,, ~ 360 000) as a stabilization agent. With the PVP
polymer protection, the nanocrystalline Aparticles form a
very stable suspension in ethanol, which is in fact indistinguish-
able from a typical homogeneous solution. The absorption
spectrum of the yellowish suspension is shown in Figure 2.
Transmission electron microscopy (TEM) and powder X-ray
diffraction methods were used in the nanopatrticle characteriza-
tion. The as prepared nanocrystalline 8gparticles with the
protective PVP polymer were deposited on a collodion film on
a copper grid support for TEM measurements. A TEM image
of the nanocrystalline A particles is shown in Figure 3. A
statistical analysis of the TEM image consisting of 200 particles
yields an average A& particle size of 7.3 nm, with a size
distribution standard deviation of 1.7 nm (Table 1). The powder
X-ray diffraction pattern of the solid sample of PVP polymer-
protected nanocrystalline A§ particles agrees well with that
of bulk Ag.S (monoclinic) documented in the X-ray diffraction
reference library. On the basis of the band broadening in the

Sx-ray diffraction patterr the average size of the articles
of a plano-concave lens and a plano-convex lens. The detector. y P ’ J A9p

in the solid sample is-20 nm, significantly larger than that for
the as prepared A§ particles.

A stable suspension of the PVP polymer-protected nano-
crystalline AgS particles in ethanol was measured for optical
limiting responses toward the second harmonic of a Q-switched
Nd:YAG laser at 532 nm. Dissolved oxygen and ammonia (from

Nanocrystalline silver sulfide (A) particles were prepared the nanoparticle preparation process) in the suspension were
in the rapid expansion of supercritical fluid solution (RESS) removed before optical limiting measurements by purging with
into liquid solution process using the setup shown in Figure 1. argon gas. The suspension was very dilute and indistinguishable
In the preparation, a solution of AgN@ supercritical ammonia  from a typical homogeneous solution, with a linear transmittance
(0.5 mg/mL) at 200C was rapidly expanded through a nozzle at 532 nm of 90%. Optical limiting measurements of the
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Figure 3. A TEM image of the nanocrystalline A§ particles (1 mm ‘f@@
=5 nm). 02 A 4
£
TABLE 1: Physical and Structural Parameters of the Metal 0.1 - b
and Metal Sulfide Nanoparticles
0.0 1 1 1 1 i 1 1
TEM 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
RESS RT stabilization ~ X-ray size o 2
particle solution solution agent diffraction (nm) (nmp Fluence In (J/cm")
AgzS ammonia ethanol PVP monoclinic 7.3 1.7 Figure 4. Optical limiting responses of the nanocrystalline ,8g
Cds ammonia water gelatin  cubic  ~5 particles in a PVP polymer-stabilized ethanol suspensipof(90%
PbS methanol methanol PVP cubic 6.6 1.0 linear transmittance at 532 are compared with thoseggirCtoluene
Ag metal ammonia ethanol PVP cubic 5.6 0.78 (O) and chloroaluminum phthalocyanine in DM#)(of the same linear
Nimetal ethanol DMF PVP cubic 5.8 0.54 transmittance and those of the CdS nanoparticle susperjaf 1%

linear transmittance and the PbS nanoparticle suspensaipaf(90%

a Size distribution standard deviation. linear transmittance

suspension were performed as a function of input light fluence
In. Fresh sample was used for edghvalue to avoid possible
effects of laser radiation on the nanoparticle suspension. As
shown in Figure 4, the nanocrystalline /A particles in the
PVP polymer-stabilized ethanol suspension exhibit strong optical
limiting responses toward 5 ns (fwhm) laser pulses at 532 nm.
The output light fluencédoyr reaches a plateau i of only | .
0.23 J/crA. The saturatethyr value at the plateau is 0.11 J/gm  Suspension of Ag metal nanoparticles.

The strong optical limiting responses are not associated with Nanocrystalline Ag particles were prepared in the RESS into
the PVP polymer because no optical limiting was observed in liquid solution process, coupled with chemical reduction. In the
the solution of PVP in ethanol. For comparison, strong optical Preparation, a solution of AgN{n supercritical ammonia (0.5
limiters Gsp and chloroaluminum phthalocyanine as benchmark mg/mL) at 160°C and 4000 psia was rapidly expanded into a
materials were investigated under the same experimental condifoom-temperature hydrazine solution in ethanok(3mL) to

Ag>S nanoparticles, though the difference is somewhat smaller
for the PbS nanoparticles. The comparison of optical limiting
results shown in Figure 4 seems to suggest that the excellent
optical limiting properties of the nanocrystalline Apatrticles

are specific with respect to the silver (Ag) element. Similarly,
strong optical limiting responses were observed in a stable

tions. As shown in Figure 4, the optical limiting responses of
the nanocrystalline A particles are considerably stronger than
those of Gp in toluene solution and chloroaluminum phthalo-
cyanine in DMF solution of the same linear transmittance of
90%.

Also, for comparison, other metal sulfide nanocrystalline
particles including cadmium sulfide (CdS) and lead sulfide (PbS)
were prepared using the same RESS into liquid solution

form nanocrystalline Ag metal particles. Under the PVP polymer
protection, the Ag nanoparticles form a very stable suspension
in ethanol, which appears indistinguishable from a typical
homogeneous solution. The absorption spectrum of the yellow-
colored suspension is also shown in Figure 2. The spectrum
consists of an intense absorption band peaking4t0 nm,
characteristic of plasmon absorpti#f?! The as prepared
nanocrystalline Ag metal particles with the protective PVP

method?>26 The nanoparticles also form stable suspensions polymer were deposited on a collodion film on a copper grid
under the protection of a stabilization agent. The physical and support for TEM measurements. A TEM image of the nano-
structural parameters of the CdS and PbS nanoparticles fromcrystalline Ag metal particles is shown in Figure 5. A statistical
TEM and powder X-ray diffraction characterizations are sum- analysis of the TEM image consisting of 180 particles yields
marized in Table 1. The absorption spectra of the metal sulfide an average Ag particle size of 5.6 nm, with a size distribution
nanoparticles are shown in Figure 2. The nanocrystalline CdS standard deviation of 0.78 nm (Table 1). The PVP polymer-
and PbS particles in stabilized methanol and water suspensionsprotected nanocrystalline Ag metal particles in the solid state
respectively, were measured for optical limiting responses were also characterized by powder X-ray diffraction method.
toward 5 ns laser pulses at 532 nm. The results are clearly The diffraction pattern matches well with that of the bulk Ag
different from that of the nanocrystalline Ag particles, as metal (face centered cubic) documented in the X-ray diffraction
compared in Figure 4. The optical limiting responses of both reference library. In the solid sample, the average size of the
CdS and PbS nanoparticles are much weaker than those of theédg particles was estimated to bel4 nm on the basis of the
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aluminum phthalocyanine in DMF solution of the same linear
transmittance (Figure 6).

For comparison, nickel (Ni) metal nanoparticles were pre-
pared using the RESS into liquid solution/chemical reduction
method for optical limiting measuremerifsA solution of NiCh
in supercritical ethanol was used in the rapid expansion, and
sodium borohydride (NaBkJ was used as a chemical reducing
agent. The Ni metal nanoparticles thus prepared form a stable
suspension in DMF under the PVP polymer protection. The
physical and structural parameters of the Ni nanoparticles from
TEM and powder X-ray diffraction characterizations are also
summarized in Table 1. Optical limiting properties of the Ni
metal nanopatrticles in PVP polymer-stabilized DMF suspension
were studied. As shown in Figure 6, the Ni metal nanoparticles
exhibit only marginal optical limiting responses toward 5 ns
laser pulses at 532 nm, significantly different from the nano-
crystalline Ag metal particles.

The optical limiting properties of the nanocrystalline Ag metal
particles and AgS particles are unique to these silver-containing
0.6 —— nanoscopic materials. However, no meaningful optical limiting
‘ responses were observed in a homogeneous solution of silver
05F  1_g0%/ 1 ions. The aqueous solution of AgNMardly absorbs at 532
y nm even at a high solution concentration, exhibiting no nonlinear
0.4 / o o o § optical behavior.

0.3 [gFPD Since the silver-containing nanocrystalline particles are in
/ suspensions, optical limiting contributions from transient scat-
terings that are associated with photothermal processes should
be considered. For a suspension of light-absorbing carbon black
. particles, strong optical limiting responses have been
observed®20 The optical limiting of carbon black suspension
has been explained in the literature in terms of the optical
051  Tg0%/ i break(_jov_vn of absorbing carbon black pa_rticles and the as_soci-
A ated liquid solvent®2°In such a mechanism, the attenuation
0.4 / 4 of nanosecond laser pulses is attributed to the formation of
AR scattering shock waves as a result of the optical breakdown.
0.3 o - However, for the optical limiting results of the nanoparticles in
A stable suspensions reported here, it seems difficult to explain
0.2 AA n the specificity in the strong optical limiting with silver-
{ containing nanocrystalline particles within the mechanistic
o1 L l framework for carbon black suspensions. A more likely scenario
0.0 oy is that the observed optical limiting responses in suspensions
"0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 of the other nanoparticles, especially the Ni metal nanopatrticles,
are contributed by similar mechanistic processes to those in
carbon black suspensions. The optical limiting properties of the

Figure 6. Optical limiting responses of the nanocrystalline Ag metal  sjlyer-containing nanocrystalline particles in stable suspensions
particles in PVP polymer-stabilized ethanol suspensioh df 90% are probably dominated by a different mechanism

linear transmittance at 532 are compared with thosegpfrCtoluene . . . T .
(), chloroaluminum phthalocyanine in DMF7), and the Ni metal It is well-documented that silver nanopatrticles have interesting

nanoparticles in DMF suspension)(of the same linear transmittance. ~ photoelectrochemical properti&s?2 Recently, Kamat and co-
workers reportet that silver colloids of particle diameter 40

band broadening in the X-ray diffraction pattéPrwyhich is also 60 nm exhibit a strong and broad transient absorption in the

significantly larger than that for the as prepared Ag particles. visible and near-infrared wavelength region when subjected to
The nanocrystalline Ag metal particles in PVP polymer- laser pulse excitation. The absorption growth monitored at 600

stabilized ethanol suspension were studied for optical limiting nm follows a single-exponential kinetic equation, with a lifetime

properties. As shown in Figure 6, the suspension of 90% linear of 1.5 + 0.1 ns? The broad transient absorption has been

transmittance exhibits strong optical limiting responses toward assigned to a transient state that is generated in a photoinduced

5 ns laser pulses at 532 nm. Before optical limiting measure- intraparticle charge separation process, namely éAj. Similar

ments, the suspension was purged with argon gas to removephotoinduced redox processes were proposed to be responsible

dissolved oxygen and ammonia (from the nanoparticle prepara-for the optical limiting characteristics of silver bromide nanosols

tion process). The output light fluendeyr reaches a plateau  comprising~6 nm particles of silver bromid#. In addition,

at input fluencdy of 0.37 J/cm, and the saturatelgyr value strong nonlinear absorption at 532 nm was observed is5Ag

at the plateau is 0.18 J/@mAgain, the optical limiting responses  CdS nanocomposites of10 nm in diamete?? The nonlinear

of the PVP polymer-protected nanocrystalline Ag metal particles absorption was attributed to the free-carrier absorption that is

are stronger than those ofgJn toluene solution and chloro-  associated with the coating of CdS patrticles with,®&°

Figure 5. TEM image of the nanocrystalline Ag metal particles (1
mm = 4 nm).

Fluence Out (J/cma)

Fluence In (J/cmz)
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Similarly, the strong optical limiting responses of the nano-  Supporting Information Available: Statistical analyses of
crystalline Ag metal and A particles toward nanosecond laser particle sizes and size distributions from TEM results and
pulses (Figures 4 and 6) may be dominated by a nonlinear powder X-ray diffraction patterns of the Ag§ and Ag metal
absorption mechanism. The photoinduced electron ejection nanoparticles (5 pages). Ordering information is given on any
produces electron holes in the nanoparticle structure, resultingcurrent masthead page.
in strong free-carrier absorption on the nanosecond time scale.
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