

Article

Subscriber access provided by ALBRIGHT COLLEGE

Copper-Catalyzed Regioselective C-H Amination of Phenol Derivatives with Assistance of Phenanthroline-Based Bidentate Auxiliary

Kazutaka Takamatsu, Yoshihiro Hayashi, Susumu Kawauchi, Koji Hirano, and Masahiro Miura ACS Catal., Just Accepted Manuscript • DOI: 10.1021/acscatal.9b01145 • Publication Date (Web): 30 Apr 2019 Downloaded from http://pubs.acs.org on May 1, 2019

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

1	
2	
2	
2	
4	
5	
6	
7	
8	
9	
10	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
י רכ	
20	
21	
22	
23	
24	
25	
26	
27	
27	
20	
29	
30	
31	
32	
33	
34	
35	
36	
20	
2/	
38	
39	
40	
41	
42	
43	
44	
45	
75	
40 17	
4/	
48	
49	
50	
51	
52	
53	
54	
55	
22	
50	
57	
58	
59	

Copper-Catalyzed Regioselective C-H Amination of Phenol Derivatives with Assistance of Phenanthroline-Based Bidentate Auxiliary Kazutaka Takamatsu,[†] Yoshihiro Hayashi,[‡] Susumu Kawauchi,[‡] Koji Hirano,^{*,†} and Masahiro Miura*[†] [†] Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan [‡] Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan ABSTRACT: A copper-catalyzed regioselective direct amination of phenol derivatives with diarylamines via phenanthroline-based bidentate auxiliary directed C-H cleavage has been developed. This reaction proceeds smoothly with only a copper salt and air as a terminal ACS Paragon Plus Environment

oxidant to produce the corresponding ortho-aminophenols in good yields. Moreover, the

directing group can be easily attached, detached, and recycled. Additionally, preliminary

computational studies of the reaction with DFT have also been performed.

Key words: amination, bidentate auxiliary, copper, C-H functionalization, phenols

ACS Catalysis

INTRODUCTION

Phenol derivatives are important classes of compounds in the food, material, and pharmaceutical fields.¹ Therefore, the efficient strategy to functionalize them are highly desirable. The aromatic electrophilic substitution is one of the most classical and promising methods for the direct transformation of phenols, and it is in common use for the synthesis of various useful compounds (Scheme 1a).² Recently, homolytic aromatic substitution (HAS) has also been developed along with rapid advances made in radical chemistry in past thirty years (Scheme 1b).³ However, the low regioselectivity and narrow substrate scope are often problematic points of these reactions.

Scheme 1. C-H Functionalization of Phenols

On the other hand, the transition-metal-catalyzed, directing-group-assisted C-H functionalization has been attracted much attention as the more atom- and step-economical methods than traditional crosscoupling reactions with organic halides and/or organometallic reagents.^{4,5} This strategy overcomes the aforementioned regioselectivity issues in the direct functionalization of phenols, and a variety of monodentate directing groups including pyridyl/pyrimidyl,⁶ ester,⁷ carbamate,⁸ silyl/silanol,⁹ and transient phosphite¹⁰ are developed for the valuable C-H functionalization reactions.¹¹ However, noble transition metals such as palladium and rhodium are essential in most cases.

Recently, well-designed bidentate directing groups enable otherwise challenging C-H bond functionalization. In particular, since the seminal work by Daugulis, various bidentate auxiliaries have been developed for the regioselective C-H functionalization of carboxylic acids and amines (Figure 1).¹² In contrast, such a bidentate chelation approach has not been reported for the direct functionalization of phenols, to the best of our knowledge. There is only one example of platinum-containing metallacycle formation in a stoichiometric manner (Scheme 2).¹³ Herein, we report a new protocol for the base-metalcatalyzed direct functionalization of phenols by using a phenanthroline-based bidentate auxiliary: a copper-catalyzed regioselective C-H amination of phenol derivatives with diarylamines is described (Scheme 3). This reaction proceeds smoothly with only a copper salt and air as a terminal oxidant to produce the corresponding *ortho*-aminophenols. The phenols can also be regarded as triarylamines, which are widely utilized in optoelectronic materials.¹⁴ This reaction is one of limited successful examples of triarylamine synthesis via directed C-H cleavage.¹⁵ Moreover, the directing group can be easily attached, detached, and recycled. Additionally, the original phenol moiety can be readily manipulated to deliver a variety of functionalized triarylamines.

RESULTS and DISCUSSION

Our group¹⁶ and others¹⁷ have focused on inexpensive, less toxic, and abundant copper salts, and developed copper-mediated unique C-H functionalization reactions. In particular, nitrogen-based bidentate directing groups allow such a base metal to be adopted in place of noble transition metals and sometimes promote otherwise challenging C-H transformations. We envisioned that suitable N,N-bidentate directing groups should be effective not only for carboxylic acids and amines but also for phenols. We thus selected the C-H amination of phenols with diarylamines as the model reaction and tested this hypothesis (Scheme 4). With Cu(OAc)₂ (1.0 eq.) under air in DMSO at 90 °C, the reaction of simple phenol (**1a-H**), phenyl acetate (**1a-Ac**), phenyl dimethylcarbamate **1a-CONMe**₂, or phenoxypyridine (**1a-Py**) with diphenylamine (**2a**) did not produce any aminated products. In contrast, a phenol derivative that bears the bipyridyl group (**1a-Bpy**) reacted with **2a** to form mono- and diaminated products in 10 and 26% yields, respectively. Moreover, the reaction efficiency was greatly enhanced with the phenanthrolyl group (**1a**) to produce the targeted di-aminated product **3aa** in 73% yield with high chemoselectivity.

Scheme 4. Effects of Directing Groups on Oxygen in Copper-Mediated C-H Amination of Phenols 1 with Diphenylamine (2a)

ACS Catalysis

The structure of **3aa** was unambiguously confirmed by NMR, HRMS, and X-ray analysis.¹⁸ The starting 1a can be easily synthesized from phenol and 2-chloro-1,10-phenanthroline (5), which is commercially available but can also be readily prepared on a deca-gram scale from inexpensive phenanthroline monohydrate in two steps (Scheme 5).¹⁹ Thus, we identified **1a** to be the promising substrate and performed additional optimization studies to increase the product yield and turnover of copper (Table 1). We first examined the amount of copper catalyst (entries 1-3). The yield remained even with 50 mol % Cu(OAc)₂ (entry 2), but the reaction was not completed with 20 mol % catalyst loading, and mono-aminated **4aa** was formed as the major product (entry 3). We also tried the selective mono-amination by decreasing amounts of diphenylamine (2a), but the di-aminated product 3aa was always competitively formed (entries 4 and 5). Neither increasing and decreasing the reaction temperature improved the product yield (entries 6 and 7). The addition of acid or base decreased the yield (entries 8-11). Attempts to apply other oxidants under N₂ also remained unsuccessful (entries 12-14). We next surveyed various copper catalysts, with $Cu(OPiv)_2$ proving to be optimal (entries 15-18). Finally, we were pleased to find that the C-H amination reaction proceeded smoothly in the presence of 30 mol % Cu(OPiv)₂ in DMSO at 90 °C for 23 hours to produce **3aa** in 83% yield (entry 19): the 30 mol % catalyst loading was essential for the full consumption of starting 1a under current conditions Notably, the yield was significantly diminished under N₂ even with a stoichiometric amount of Cu(OPiv)₂

(entry 20), thus indicating an important role of molecular oxygen in this reaction. The control experiment without $Cu(OPiv)_2$ confirmed the necessity of the copper salt in this reaction (entry 21).

Scheme 5. Synthesis of Directing Group 5 and Substrate 1a

 Table 1. Optimization Studies for Diamination of 1a with 2a^a

ACS Catalysis

1 2	2	Cu(OAc) ₂ (50)	-	90 °C, air	73 (76)/n.d.
3 4 5 6	3	Cu(OAc) ₂ (20)	-	90 °C, air	23/40
7 — 8 9 10 11 12	4	Cu(OAc) ₂ (100)	-	90 ºC, air	20/39
13 14 15 16				90 °C, O ₂	
17 18 19	5	Cu(OAC) ₂	-	(1 atm,	21/36
20 21 22 23		(100)	b	oalloon)	
24 <u> </u>	6	Cu(OAc) ₂ (50)	-	110 °C, air	58/n.d.
27 28 29 30	7	Cu(OAc) ₂ (50)	-	70 °C, air	73/n.d.
31 32 33 34	8	Cu(OAc) ₂ (50)	AcOH (0.25)	90 °C, air	46/8
35 36 37	9	Cu(OAc) ₂ (50)	PivOH (0.25)	90 °C, air	45/14
38 39 40	10	Cu(OAc) ₂ (50)	K ₂ CO ₃ (0.25)	90 °C, air	trace/22
42 43 44	11	Cu(OAc) ₂ (50)	Cy ₂ NMe (0.25)	90 °C, air	66/n.d.
45 <u> </u> 46 47 48	12	Cu(OAc) ₂ (20)	MnO ₂ (1.0)	90 °C, N ₂	7/34
49 50 51	13	Cu(OAc) ₂ (20)	NMO (1.0)	90 °C, N ₂	n.d./n.d.
52 53 54 55	14	Cu(OAc) ₂ (20)	K ₂ S ₂ O ₈ (1.0)	90 °C, N ₂	n.d./n.d.
56 — 57 58 59					

15	Cu(OPiv) ₂ (20)	-	90 °C, air	63/16
16	Cu(eh) ₂ (20)	-	90 °C, air	47/23
17	CuCl ₂ (20)	-	90 °C, air	n.d./n.d.
18	Cu(OTf) ₂ (20)	-	90 ºC, air	n.d./n.d.
19	Cu(OPiv)₂ (30)	-	90 ºC, air	79 (83)/n.a
	Cu(OPiv) ₂			
20		-	90 °C, N ₂	11/20
	(400)			

^a Reaction conditions: 1a (0.25 mmol), 2a (0.50 mmol), copper catalyst, additives, DMSO (1.5

mL).

^{*b*} Determined by ¹H NMR with dibenzyl ether as internal standard. Isolated yield in parentheses. Phen = 2-(1,10-phenanthrolyl), Piv = *tert*-butylcarbonyl, eh = 2-ethylhexanoate, Tf = trifluoromethanesulfonyl.

With the optimal conditions in hand, we examined the substrate scope (Scheme 6; 0.25 mmol scale). Phenol derivatives bearing both electron-donating and electron-withdrawing substituents at the *para*-position reacted with diphenylamine (**2a**) to produce di-aminated products in good yield (**3aa-3ha**; 70-

ACS Catalysis

92%). Only one exception was CF₃-substituted phenol (**3ia**), in which the reaction efficiency was slightly decreased and the mono-aminated 4ia was also formed. It is noteworthy that the C-H amination preferably occurred over the Ullmann-type amination to afford **3fa** and **3ga** with the Ar-Br and Ar-I molection of the molecular The reaction of *meta*-Me-substituted substrate and 2-naphthol derivative proceeded at less sterically hindered positions to produce mono-aminated products exclusively (4ia and 4la). The electron-withdrawing and smaller F substituent at the *meta* position also showed the mono-amination selectivity and good regioselectivity in a ratio of 9.2:1, albeit with the moderate reactivity (4ka and 4ka'). The ortho- substituents were also compatible to form the triarylamines in good yields (4ma and 4na). We next performed the C-H amination of 1a with various amines 2. Diarylamines with methyl (3ab, 3af, 3ai, and 3ak), methoxy (3ah and 3aj), halogen (3ac, 3ad, and 3ag), and phenyl (3ae and 3ag) groups underwent the reaction to afford the corresponding di-aminated compounds. As a general trend, the electron-rich amine gave a lower yield, probably because of competitive oxidative decomposition (3ha). Again, bromo and iodo groups in the diarylamines were tolerated (3ac, 3ad, and 3ag). The mono- and di-aminated products (3al/4al and 3am/4am) were also obtained from cyclic amine 21 and N-methylaniline (2m) albeit in moderate combined yields. The N-benzylaniline (2n) also underwent the reaction with efficiency and selectivity to similar to those of N-methylaniline (2m; 3an + 4an). The benzyl group can be deprotected under hydrogenolysis, possibly giving the corresponding secondary NH amine. Moreover, electron-rich carbazoles could be coupled with 1a to form the corresponding mono- and di-aminated products (3ap/4ap and **3ag**/**4ag**). Additionally, the C-H amination could be easily conducted on a ten- or four-fold larger scale, thus indicating the good reproducibility and practicality of this process (3aa, 3ba, and 4ja). On the other hand, attempts to apply primary amines and dialkylamines remained unsuccessful.

These amines removed the phenanthroline auxiliary from **1a** by attack at the imine moiety to

form the parent phenol (data not shown).

Scheme 6. Copper-Catalyzed C-H Amination of Various Phenol Derivatives 1 with Amines 2.ª

ACS Catalysis

^a Conditions: Cu(OPiv)₂ (0.075 mmol), **1** (0.25 mmol), **2** (0.50 mmol), DMSO (5.0 mL), 100 °C,

20-24 h, air. The combined yield of diaminated product **3** and monoaminated product **4** is shown. The ratio of **3**/**4** is in parentheses. Value in brackets indicates NMR yield. ^b On a 1.0 mmol scale. ^c For two days. ^d On a 2.5 mmol scale. ^e A regioisomeric ratio of **4ka** and **4ka**'. ^f With 0.75 mmol of **2**. Phen = 2-(1,10-phenanthrolyl).

To investigate the reactivity trend, we performed the several competitive experiments (Scheme 7). The substrate **1m** was preferably coupled with the electron-deficient **2c** over the relatively electron-rich **1a**. On the other hand, the more electron-rich phenol derivative **1j** showed higher reactivity than the electron-deficient **1k**.

Scheme 7. Competitive Experiments

ACS Catalysis

To gain more insight into the mechanism, we first investigated the effect of directing groups in the C-H activation in the absence of the coupling partner, diphenylamine (2a). In the presence of $Cu(OPiv)_2$ and $AcOD-d_4$, the H/D exchange of phenoxypridine (1a-Py) was not observed at all (Scheme 8, eq 1). In contrast, deuterium incorporation in the phenol ring with the bipyridyl group (1a-Py) and the phenanthrolyl group (1a) were detected in 17% and 38%, respectively (eqs 2 and 3). These results apparently indicate positive effects of the bidentate directing group, especially phenanthrolyl group in the C-H activation step. We also carried out kinetic studies with the deuterium-labeled substrate 1a-d₅. Even at an early stage of the reaction, the D/H exchange of 1a-d₅ was not observed (eq 4), thus suggesting that the C-H bond cleavage is irreversible in the presence of diphenylamine coupling partner 2a. Moreover, KIE value from the parallel reactions with 1a and 1a-d₅ was determined to be 1.45, which is relatively small but meaningful (eq 5). On the other hand, Stahl *et al.* recently reported the homocoupling reaction of diarylamines in the presence of a copper salt under O₂ to produce

ACS Catalysis

tetraarvlhvdrazines.²⁰ The reported conditions are similar to our optimal conditions. Thus, we independently prepared tetraphenylhydrazine (6a) and investigated its intermediacy in the C-H amination of 1a. The reaction with one equivalent of **6a** instead of diphenylamine (**2a**) proceeded smoothly to form the same diaminated product **3aa** in a good yield (eq 6). Moreover, the aminated products **3aa** and 4aa were obtained even under N₂ atmosphere, albeit with decreased efficiency. However, the reaction of the hydrazine without the copper catalyst produced no product (eq 7). Therefore, the hydrazine generated in situ from the amine may be a truly reactive component in the copper-catalyzed C-H amination, and molecular oxygen plays a role in the hydrazine formation. However, significant amount of tetraphenylhydrazine 6a rapidly decomposed in DMSO at 90 °C under air or N₂ to form the parent diphenylamine 2a in 46% or 42% yield, respectively (eq 8). Thus, the possibility that in eq 6 the reaction with the decomposed 2a produced 3aa cannot be excluded. In contrast, the reaction with bicarbazole 60 did not gave any product in the presence and absence of molecular oxygen, and the hydrazine-type intermediate is thus unlikely involved in the reaction with carbazoles (eq 9).

Scheme 8. Mechanistic Studies

ACS Catalysis

ACS Catalysis

On the basis of the above results and literature information, we propose two reaction mechanisms of **1a** with 2a as shown in Schemes 9 and 10 (mechanism A and B, respectively). In the mechanism A. tetraphenylhydrazine (6a) is formed as the reactive intermediate (Scheme 9). An initial coordination promoted by the N.N-chelation of the phenanthroline moiety in 1a to copper center generates a chelated complex 7. Subsequent irreversible C-H bond cleavage forms the six-membered intermediate 8. This metallacycle is then oxidized to the copper(III) species 9^{21} with the hydrazine **6a**, which is produced by the copper-catalyzed homo-coupling of 2a in the presence of O_2 . The corresponding mono-aminated product **4aa** is obtained by reductive elimination and the following dissociation of the copper salt from complex 10. The same C-H amination occurs at another *ortho* position to form the observed di-aminated The resulting copper(I) species 11 is finally oxidized into copper(II) with 6a to complete product **3aa**. the catalytic cycle. The hydrazine **6a** could be regenerated immediately from the amino radical species by the copper catalyst and O_2 .

In the mechanism B, diphenylamine (2a) directly participates in the amination (Scheme 10). An initial coordination of 1a to copper center and subsequent C-H bond cleavage produces the metallacycle 8

through the same mechanism as in mechanism A. This intermediate is then oxidized to the copper(III) species **9** with another copper(II) species. The mono-aminated product **4aa** is obtained by reductive elimination and the following dissociation of the copper salt from complex **10**. The resulting copper(I) species **11** is finally oxidized into copper(II) with molecular oxygen to complete the catalytic cycle. Given the observation in eqs 6 and 7, we cannot provide any conclusive statement on the reaction mechanism of **1a** and **2a**, only with experimental studies. Thus, to confirm which mechanism is likely involved, computational studies with DFT were performed.

Scheme 10. Plausible Reaction Mechanism B (X = OPiv or NPh₂)

The enthalpy profiles of mechanism A and B are shown in Figure 2 and 3. In mechanism A, a chelate complex **A** undergoes the C-H cleavage of *ortho*-position of phenoxy leading to the six-membered intermediate **B** with 17.7 kcal mol⁻¹ of activation enthalpy and 15.6 kcal mol⁻¹ reaction enthalpy. **B** is oxidized and aminated by the hydrazine forming the copper(III) species **C** and NPh₂ radical. This step was 33.6 kcal mol⁻¹ endothermic. If oxidation of **B** by the hydrazine directly leads to **C** and half equivalent of the hydrazine, this step was 14.8 kcal mol⁻¹ endothermic process. The reductive elimination of **C** leading to the mono-aminated **D** was nearly barrierless and 53.8 kcal mol⁻¹ exothermic reaction.

In mechanism B, the six-membered intermediate **B** was generated by the same C-H cleavage as mechanism A. **B** is oxidized by the copper cluster species of $[Cu(OAc)_2]_2$ to the copper(III) species **E**. This step was 3.4 kcal mol⁻¹ endothermic. The amination of **F** to the aminated species **G** was almost barrierless. Although AcOH was removed from **G** to lead **C** for the convenience of calculation, the

continuous reductive elimination can progress from **G**. The reductive elimination was barrierless and highly exothermic reaction. The oxidation and amination steps by $[Cu(OAc)_2]_2$ and NHPh₂ (mechanism B) are energetically favored than those by the hydrazine (mechanism A), indicating that mechanism B is likely involved.

Figure 2. Enthalpy (Gibbs energy) profile of Mechanism A.

ACS Catalysis

Figure 3. Enthalpy (Gibbs energy) profile of Mechanism B.

ACS Catalysis

Given the results observed in Scheme 7, the more acidic amine is more easily deprotonated, leading to the aminated intermediate corresponding to **G** preferably. The C–H cleavage can involve the acetate-ligand-assisted concerted metalation-deprotonation (CMD)-type pathway, but the electrophilic nature is also important in the product-determining step.²² However, the role of molecular oxygen still remains unclear even from DFT calculation, and further studies are required for clarification. On the other hand, a mechanism of type B can be operative also in the C-H amination with carbazoles because the reaction of **1a** with bicarbazole **60** did not occur at all (eq. 9, vide supra).

We finally attempted the derivatization of the aminated products (Scheme 11). The directing group of **3aa** could be easily removed with potassium *tert*-butoxide in toluene at 125 °C, and both free phenol **12aa** and phenanthrolidone (**13**) were obtained in nearly quantitative yields after treatment of the crude mixture with trifluoroacetic acid (TFA) in CH₂Cl₂. Subsequent dehydrative chlorination of **13** furnished the chlorophenanthrizine **5** in a good overall yield, which can be recycled as the directing group (Scheme 3). The phenol **12aa** was coupled with Ph₂IOTf in the presence of tetrabutylammonium fluoride hydrate (TBAF·nH₂O) and NaHCO₃ to form the *O*-arylated product **14aa** in 70% yield.²³ Moreover, **12aa** reacted with PhNTf₂ in acetonitrile at 60 °C to furnish the triflate **15aa**, and successive thia-Fries rearrangement of **15aa** produced **16aa** in 96% yield. The directing group of mono-aminated product **4ja** with PhenoFluor Mix²⁴ was also possible, and the fluorine-containing triarylamine **17ja** was obtained in an acceptable yield. Finally, the triflate **15ja** prepared from **12ja** underwent the Suzuki-Miyaura coupling with phenvlboronic acid to produce **18ia** in 66% yield.

Scheme 11. Derivatization of the Aminated Products

The

corresponding *ortho*-aminophenols in good yields. Moreover, the directing group can be easily attached, detached, and recycled. Additionally, preliminary computational studies with DFT are also performed. The obtained results will find wide applications in other base-metal-catalyzed C-H functionalization of phenols and even more challenging aliphatic alcohol derivatives. ASSOCIATED CONTENT Supporting Information: The Supporting Information is available free of charge on the ACS Publications website at DOI: XXX. Procedures and characterization data (PDF) X-ray crystallographic data for **3aa** (CIF) AUTHOR INFORMATION **Corresponding Authors** *E-mail: k_hirano@chem.eng.osaka-u.ac.jp. *E-mail: miura@chem.eng.osaka-u.ac.jp. ORCID Koji Hirano: 0000-0001-9752-1985 **ACS Paragon Plus Environment**

 ACS Catalysis

Masahiro Miura: 0000-0001-8288-6439

Notes

The authors declare no competing financial interest.

ACKOWLEDGEMENTS

This work was supported by JSPS KAKENHI Grant Nos. JP 17J00349 (Grant-in-Aid for JSPS Research Fellow) to K.T., JP 15H05485 (Grant-in-Aid for Young Scientists (A)) and 18K19078 (Grant-in-Aid for Challenging Research (Exploratory)) to K.H. and JP 17H06092 (Grant-in-Aid for Specially Promoted Research) to M.M. The numerical calculations were carried out on the TSUBAME 3.0 supercomputer at the Tokyo Institute of Technology, Tokyo, Japan, and on the supercomputer at the Research Center for Computational Science, Okazaki, Japan. This computational work was partly supported by a JST CREST (Grant Number JPMJCR1522 to S. K.) and Grant-in-Aid for Young Scientists (B) (JSPS KAKENHI Grant Number JP17K17720 to Y. H.).

REFERENCES

ACS Paragon Plus Environment

(1) (a) Tyman, J. H. P. Synthetic and Natural Phenols, Elsevier Science, Amsterdam, 1996. (b)

Rappoport, Z. The Chemistry of Phenols, John Wiley & Sons, Ltd, Chichester, 2003.

(2) A review: (a) Galabov, B.; Nalbantova, D.; Schleyer, P. von R.; Schleyer, III, H. F.

Electrophilic Aromatic Substitution: New Insights into an Old Class of Reactions. Acc. Chem.

Res. 2016, 49, 1191. For an example of amination, see: (b) Brandes, S.; Bella, M.; Kjærsgaard,

A.; Jørgensen, K. A. Chirally Aminated 2-Naphthols-Organocatalytic Synthesis of Non-Biaryl

Atropisomers by Asymmetric Friedel-Crafts Amination. Angew. Chem., Int. Ed. 2006, 45, 1147.

(3) A review: (a) Bowman, W. R.; Storey, J. M. D. Synthesis using aromatic homolytic

substitution-recent advances. Chem. Soc. Rev. 2007, 36, 1803. For examples of amination,

see: (b) Louillat-Habermeyer, M.-L.; Jin, R.; Patureau, F. W. O₂-mediated dehydrogenative

amination of phenols. Angew. Chem., Int. Ed. 2015, 54, 4102. (c) Zhao, Y.; Huang, B.; Yang,

C.; Xia, W. Visible-Light-Promoted Direct Amination of Phenols via Oxidative Cross-

Dehydrogenative Coupling Reaction. Org. Lett. 2016, 18, 3326. (d) Goswami, M.; Konkel, A.;

Rahimi, M.; Louillat-Habermeyer, M.-L.; Kelm, H.; de Bruin, R. Jin, B.; Patureau, F. W.

Mechanism of the Dehydrogenative Phenothiazination of Phenols. Chem.-Eur. J. 2018, 24,

11936.

ACS Catalysis

(4) Recent selected reviews: (a) Chen, X.; Engle, K. M.; Wang, DH.; Yu, JQ. Palladium(II)-
Catalyzed C-H Activation/C-C Cross-Coupling Reactions: Versatility and Practicality. Angew.
Chem., Int. Ed. 2009, 48, 5094. (b) Ackermann, L.; Vicente, R.; Kapdi, A. R. Transition-Metal-
Catalyzed Direct Arylation of (Hetero)Arenes by C-H Bond Cleavage. Angew. Chem., Int. Ed.
2009, 48, 9792. (c) Dudnik, A. S.; Gevorgyan, V. Formal Inverse Sonogashira Reaction: Direct
Alkynylation of Arenes and Heterocycles with Alkynyl Halides. Angew. Chem., Int. Ed. 2010, 49,
2096. (d) Satoh, T.; Miura, M. Oxidative Coupling of Aromatic Substrates with Alkynes and
Alkenes under Rhodium Catalysis. Chem.—Eur. J. 2010, 16, 11212. (e) Yamaguchi, J.;
Yamaguchi, A. D.; Itami, K. C-H Bond Functionalization: Emerging Synthetic Tools for Natural
Products and Pharmaceuticals. Angew. Chem., Int. Ed. 2012, 51, 8960. (f) Drapeau, M. P.;
Gooßen, L. J. Carboxylic Acids as Directing Groups for C-H Bond Functionalization. Chem
<i>Eur. J.</i> 2016 , <i>22</i> , 18654. (g) Sambiagio, C.; Blieck, R.; Dao-Huy, T.; Pototschnig, G.; Schaaf, P.;
Wiesinger, T.; M. Zia, F.; Wencel-Delord, J.; Besset, T.; Maes, B. U. W.; Schnürch, M. A
comprehensive overview of directing groups applied in metal-catalysed C-H functionalisation
chemistry. Chem. Soc. Rev. 2018, 47, 6603. (h) Gandeepan, P.; Muller, T.; Zell, D.; Gera, G.;
Warratz, S.; Ackermann, L. 3d Transition Metals for C-H Activation. Chem. Rev. 2019, 119,
2192. See the Supporting Information for a complete list of references.

(5) For a pioneering work, see: Murai, S.; Kakiuchi, F.; Sekine, S.; Tanaka, Y.; Kamatani, A.;

Sonoda, M.: Chatani, N. Efficient catalytic addition of aromatic carbon-hydrogen bonds to olefins. Nature 1993, 366, 529. (6) (a) Jia, X.; Zhang, S.; Wang, W.; Luo, F.; Cheng, J. Palladium-Catalyzed Acylation of sp² C-H Bond: Direct Access to Ketones from Aldehydes. Org. Lett. 2009, 11, 3120. (b) Gu, S.; Chen, C.; Chen, W. Ortho-Functionalization of 2-Phenoxypyrimidines via Palladium-Catalyzed C-H Bond Activation. J. Org. Chem. 2009, 74, 7203. (c) Chu, J.-H.; Lin, P.-S.; Wu, M.-J. Palladium(II)-Catalyzed Ortho Arylation of 2-Phenoxypyridines with Potassium Aryltrifluoroborates via C-H Functionalization. Organometallics 2010, 29, 4058. (d) Ackermann, L.; Diers, E.; Manvar, A. Ruthenium-Catalyzed C-H Bond Arylations of Arenes Bearing Removable Directing Groups via Six-Membered Ruthenacycles. Org. Lett. 2012, 14, 1154. (e) Yao, J.; Feng, R.; Wu, Z.; Liu, Z.; Zhang, Y. Palladium-Catalyzed Decarboxylative Coupling of α-Oxocarboxylic Acids with C(sp²)-H of 2-Aryloxypyridines. Adv. Synth. Catal. 2013, 355, 1517. (f) Ma, W.; Ackermann, L. Ruthenium(II)-Catalyzed C-H Alkenylations of Phenols with Removable Directing Groups. Chem.-Eur. J. 2013, 19, 13925. (g) Liu, B.; Jiang, H.-Z.; Shi, B.-F. Palladium-Catalyzed Oxidative Olefination of Phenols Bearing Removable Directing Groups under Molecular Oxygen. J. Org. Chem. 2014, 79, 1521. (h) Lou, S.-J.; Wang, Y.-F.; Xu, D.-Q.;

ACS Catalysis

Du, XH.; He, JQ.; Mao, YJ.; Xu, ZY. Palladium-Catalyzed Oxidative Olefination of Phenols
Bearing Removable Directing Groups under Molecular Oxygen. ACS Catal. 2015, 5, 2846.
(7) Xiao, B.; Fu, Y.; Xu, J.; Gong, TJ.; Dai, JJ.; Yi, J.; Liu, L. Pd(II)-Catalyzed C-H
Activation/Aryl-Aryl Coupling of Phenol Esters. J. Am. Chem. Soc. 2010, 132, 468.
(8) (a) Zhao, X.; Yeung, C. S.; Dong, V. M. Palladium-Catalyzed Ortho-Arylation of O-
Phenylcarbamates with Simple Arenes and Sodium Persulfate. J. Am. Chem. Soc. 2010, 132,
5837. (b) K. Yamazaki.; S. Kawamorita.; H. Ohmiya.; M. Sawamura. Directed Ortho Borylation
of Phenol Derivatives Catalyzed by a Silica-Supported Iridium Complex. Org. Lett. 2010, 18,
3978. (c) Gong, TJ.; Xiao, B.; Liu, ZJ.; Wan, J.; Xu, J.; Luo, DF.; Fu, Y.; Liu, L. Rhodium-
Catalyzed Selective C-H Activation/Olefination of Phenol Carbamates. Org. Lett. 2011, 13,
3235. (d) Feng, C.; Loh, TP. Rhodium-catalyzed direct ortho C-H olefination of phenol
derivatives. Chem. Commun. 2011, 47, 10458. (e) John, A.; Nicholas, K. M. Palladium
Catalyzed C–H Functionalization of <i>O</i> -Arylcarbamates: Selective <i>ortho</i> -Bromination Using NBS.
<i>J. Org. Chem.</i> 2012 , <i>77</i> , 5600.
(9) (a) Boebel, T. A.; Hartwig, J. F. Silyl-Directed, Iridium-Catalyzed ortho-Borylation of Arenes.
A One-Pot ortho-Borylation of Phenols, Arylamines, and Alkylarenes. J. Am. Chem. Soc. 2008,
<i>130</i> , 7534. (b) Huang, C.; Gevorgyan, V. TBDPS and Br-TBDPS Protecting Groups as Efficient
ACS Paragon Plus Environment 29

1
2
3
4
5
6
7
, o
0
9
10
11
12
13
14
15
16
17
10
10
19
20
21
22
23
24
25
25
20
27
28
29
30
31
32
33
34
35
22
30
37
38
39
40
41
42
43
44
77 15
4J 46
46
4/
48
49
50
51
52
53
57
54
55 52
56
57
58
59
60

Aryl Group Donors in Pd-Catalyzed Arylation of Phenols and Anilines. J. Am. Chem. Soc. 2009, 131, 10844. (c) Huang, C.; Chattopadhyay, B.; Gevorgyan, V. Silanol: A Traceless Directing Group for Pd-Catalyzed o-Alkenylation of Phenols. J. Am. Chem. Soc. 2011, 133, 12406. (d) Huuang, C.; Ghavtadze, N.; Chattopadhyay, B.; Gevorgyan, V. Synthesis of Catechols from Phenols via Pd-Catalyzed Silanol-Directed C-H Oxygenation. J. Am. Chem. Soc. 2011, 133, 17630. (e) Mi, R.-J.; Sun, J.; Kühn, F. E.; Zhou, M.-D. Xu, Z. A meta-selective-C–H alkenylation of phenol-derivatives employing a traceless organosilicon template. Chem. Commun. 2017, 53, 13209. (f) Mi, R.-J.; Sun, Y.-Z.; Wang, J.-Y.; Sun, J.; Xu, Z.; Zhou, M.-D. Rhodium(III)-Catalyzed Meta-Selective C-H Alkenylation of Phenol Derivatives. Org. Lett. 2018, 20, 5126. (10) (a) Bedford, R. B.; Coles, S. J.; Hursthouse, M. B.; Limmert, M. E. The Catalytic Intermolecular Orthoarylation of Phenols. Angew. Chem., Int. Ed. 2003, 42, 112. (b) Oi, S.; Watanabe, S.; Fukita, S.; Inoue, Y. Rhodium-HMPT-catalyzed direct ortho arylation of phenols with aryl bromides. Tetrahedron Lett. 2003, 44, 8665. (c) Bedford, R. B.; Limmert, M. E. Catalytic Intermolecular Ortho-Arylation of Phenols. J. Org. Chem. 2003, 68, 8669. (11) For examples of C-H functionalization of phenols with other directing groups, see: (a) Cong, X.; You, J.; Gao, G.; Lan, J. 2-Pyridylmethyl ether: a readily removable and efficient directing group for amino acid ligand accelerated ortho-C-H olefination of phenols. Chem. Commun.

ACS Catalysis

2013, 49, 662. (b) Dai, HX.; Li, G.; Zhang, XG.; Stepan, A. F.; Yu, JQ. Pd(II)-Catalyzed
ortho- or meta-C-H Olefination of Phenol Derivatives. J. Am. Chem. Soc. 2013, 135, 7567. (c)
Wang, P.; Farmer, M. E.; Huo, X.; Jain, P.; Shen, PX.; Ishoey, M.; Bradner, J. E.; Wisniewski,
S. R.; Eastgate, M. D.; Yu, JQ. Ligand-Promoted Meta-C–H Arylation of Anilines, Phenols, and
Heterocycles. <i>J. Am. Chem. Soc.</i> 2016, <i>138</i> , 9269. (d) Wang, P.; Li, GC.; Jain, P.; Farmer, M.
E.; He, J.; Shen, PX.; Yu, JQ. Ligand-Promoted <i>meta</i> -C-H Amination and Alkynylation. J.
Am. Chem. Soc. 2016, 138, 14092. Some regioselective C-H functionalizations of the free
phenols were also reported, see: (e) Hennings, D. D.; Iwasa, S.; Rawal, V. H. Anion-Accelerated
Palladium-Catalyzed Intramolecular Coupling of Phenols with Aryl Halides. J. Org. Chem. 1997,
62, 2. (f) Esguerra, K. V. N.; Fall, Y.; Petitjean, L.; Lumb, JP. Controlling the Catalytic Aerobic
Oxidation of Phenols. J. Am. Chem. Soc. 2014, 136, 7662. (g) Esguerra, K. V. N.; Fall, Y.; Lumb,
JP. A Biomimetic Catalytic Aerobic Functionalization of Phenols. Angew. Chem., Int. Ed. 2014,
<i>53</i> , 5877. (h) Yu, Z.; Li, Y.; Shi, J.; Ma, B.; Liu, L.; Zhang, J. $(C_6F_5)_3B$ Catalyzed Chemoselective
and <i>ortho</i> -Selective Substitution of Phenols with α -Aryl α -Diazoesters. <i>Angew. Chem., Int. Ed.</i>
2016, <i>55</i> , 14807. (i) Dai, JL.; Shao, NQ.; Zhang, J.; Jia, RP.; Wang, DH. Cu(II)-Catalyzed
ortho-Selective Aminomethylation of Phenols. J. Am. Chem. Soc. 2017, 139, 12390.

(12) For a pioneering work by Dauglis, see: (a) Zaitsev, V. G.; Shabashov, D.; Daugulis, O. Highly Regioselective Arylation of sp³ C-H Bonds Catalyzed by Palladium Acetate. J. Am. Chem. Soc. 2005, 127, 13154. Recent reviews: (b) Corbet, M.; De Campo, F. 8-Aminoquinoline: A Powerful Directing Group in Metal-Catalyzed Direct Functionalization of C-H Bonds. Angew. Chem., Int. Ed. 2013, 52, 9896. (c) Rouquet, G.; Chatani, N. Catalytic Functionalization of C(sp²)-H and C(sp³)-H Bonds by Using Bidentate Directing Groups. *Angew.* Chem., Int. Ed. 2013, 52, 11726. (d) Castro, L. C. M.; Chatani, N. Nickel Catalysts/N,N'-Bidentate Directing Groups: An Excellent Partnership in Directed C–H Activation Reactions. Chem. Lett. 2015, 44, 410. (e) Liu, J.; Chen, G.; Tan, Z. Copper-Catalyzed or -Mediated C-H Bond Functionalizations Assisted by Bidentate Directing Groups. Adv. Synth. Catal. 2016, 358, 1174. (13) Carroll, J.; Woolard, H. G.; Mroz, R.; Nason, C. A.; Huo, S. Regiospecific Acylation of Cycloplatinated Complexes: Scope, Limitations, and Mechanistic Implications. Organometallics , *35*, 1313. (14) (a) Strohriegl, P.; Grazulevicius, J. V. Charge-Transporting Molecular Glasses. Adv. Mater. 2002, 14, 1439. (b) Ning, Z.; Tian, H. Triarylamine: a promising core unit for efficient photovoltaic

materials. Chem. Commun. 2009, 5483.

ACS Catalysis

(15) (a) Du, C.; Li, PX.; Zhu, X.; Han, JN.; Niu, JL.; Song, MP. Cobalt-Catalyzed Oxidative
C–H/N–H Cross-Coupling: Selective and Facile Access to Triarylamines. ACS Catal. 2017, 7,
2810. For N-H arylation of azoles with arenes via directed C-H cleavage, see: (b) Sadhu, P.;
Punniyamurthy, T. Copper(II)-mediated regioselective <i>N</i> -arylation of pyrroles, indoles, pyrazoles
and carbazole via dehydrogenative coupling. Chem. Commun. 2016, 52, 2803.
(16) (a) Kitahara, M.; Umeda, N.; Hirano, K.; Satoh, T.; Miura, M. Copper-Mediated
Intermolecular Direct Biaryl Coupling. J. Am. Chem. Soc. 2011, 133, 2160. (b) Nishino, M.;
Hirano, K.; Satoh, T.; Miura, M. Copper-Mediated and Copper-Catalyzed Cross-Coupling of
Indoles and 1,3-Azoles: Double C-H Activation. Angew. Chem., Int. Ed. 2012, 51, 6993. (c)
Nishino, M.; Hirano, K.; Satoh, T.; Miura, M. Copper-Mediated C-H/C-H Biaryl Coupling of
Benzoic Acid Derivatives and 1,3-Azoles. Angew. Chem., Int. Ed. 2013, 52, 4457. (d) Odani, R.;
Hirano, K.; Satoh, T.; Miura, M. Copper-Mediated C6-Selective Dehydrogenative
Heteroarylation of 2-Pyridones with 1,3-Azoles. Angew. Chem. Int. Ed. 2014, 53, 10784. (e)
Takamatsu, K.; Hirano, K.; Miura, M. Copper-Mediated Decarboxylative Coupling of
Benzamides with ortho-Nitrobenzoic Acids by Directed C-H Cleavage. Angew. Chem. Int. Ed.
2017 , <i>56</i> , 5353. See the Supporting Information for a complete list of references.

(17) Selected examples: (a) Chen, X.; Hao, X.-S.; Goodhue, C. E.; Yu, J.-Q. Cu(II)-Catalyzed Functionalizations of Aryl C-H Bonds Using O₂ as an Oxidant. J. Am. Chem. Soc. 2006, 128, 6790. (b) Uemura, T.; Imoto, S.; Chatani, N. Amination of the Ortho C-H Bonds by the Cu(OAc)₂mediated Reaction of 2-Phenylpyridines with Anilines. Chem. Lett. 2006, 35, 842. (c) Li, Q.; Zhang, S.-Y.; He, G.; Ai, Z.; Nack, W. A.; Chen, G. Copper-Catalyzed Carboxamide-Directed Ortho Amination of Anilines with Alkylamines at Room Temperature. Org. Lett. 2014, 16, 1764. (d) Shang, M.; Sun, S.-Z.; Dai, H.-X.; Yu, J.-Q. Cu(OAc)₂-Catalyzed Coupling of Aromatic C-H Bonds with Arylboron Reagents. Org. Lett. 2014, 16, 5666. (e) Roane, J.; Daugulis, O. A General Method for Aminoquinoline-Directed, Copper-Catalyzed sp² C–H Bond Amination. J. Am. Chem. Soc. 2016, 138, 4601. (f) Yang, Q.-L.; Wang, X.-Y.; Lu, J.-Y.; Zhang, L.-P.; Fang, P.; Mei, T.-S. Copper-Catalyzed Electrochemical C-H Amination of Arenes with Secondary Amines. J. Am. *Chem. Soc.* **2018**, *140*, 11487. See the Supporting Information for a complete list of references. (18) Crystallographic data for 3aa have been deposited with the Cambridge Crystallographic Data Centre (CCDC 1884268). See the Supporting Information for details. (19) (a) Sun, W.-H.; Jie, S.; Zhang, S.; Zhang, W.; Song, Y.; Ma, H.; Chen, J. Iron Complexes

Bearing 2-Imino-1,10-phenanthrolinyl Ligands as Highly Active Catalysts for Ethylene

ACS Catalysis

Oligomerization. Organometallics 2006, 25, 666. (b) Wang, D.; Wang, Y.; Zhao, J.; Li, L.; Miao, L.; Wang, D.; Sun, H.; Yu, P. A highly practical and convenient halogenation of fused heterocyclic N-oxides. Tetrahedron 2016, 72, 5762. (20) Ryan, M. C.; Martinelli, J. R.; Stahl, S. S. Cu-Catalyzed Aerobic Oxidative N-N Coupling of Carbazoles and Diarylamines Including Selective Cross-Coupling. J. Am. Chem. Soc. 2018, , 9074. (21) (a) Ribas, X.; Jackson, D. A.; Donnadieu, B.; Mahía, J.; Parella, T.; Xifra, R.; Hedman, B.; Hodgson, K. O.; Llobet, A.; Stack, T. D. P. Aryl C-H Activation by Cull To Form an Organometallic Aryl-Cu^{III} Species: A Novel Twist on Copper Disproportionation. Angew. Chem., Int. Ed. 2002. 41, 2991. (b) Huffman, L. M.; Stahl, S. S. Carbon-Nitrogen Bond Formation Involving Well-Defined Aryl-Copper(III) Complexes. J. Am. Chem. Soc. 2008, 130, 9196. (c) King, A. E.; Brunold, T. C.; Stahl, S. S. Mechanistic Study of Copper-Catalyzed Aerobic Oxidative Coupling of Arylboronic Esters and Methanol: Insights into an Organometallic Oxidase Reaction. J. Am. Chem. Soc. 2009, 131, 5044. (d) King, A. E.; Huffman, L. M.; Casitas, A.; Costas, M.; Ribas, X.; Stahl, S. S. Copper-Catalyzed Aerobic Oxidative Functionalization of an Arene C-H Bond: Evidence for an Aryl-Copper(III) Intermediate. J. Am. Chem. Soc. 2010, 132, 12068. (e) Casitas, A.; Canta, M.; Solá, M.; Costas, M.; Ribas, X. Nucleophilic Aryl Fluorination and Aryl Halide

Exchange Mediated by a Cu^I/Cu^{III} Catalytic Cycle. J. Am. Chem. Soc. 2011, 133, 19386. (f) Suess, A. M.; Ertem, M. Z.; Cramer, C. J.; Stahl, S. S. Divergence between Organometallic and Single-Electron-Transfer Mechanisms in Copper(II)-Mediated Aerobic C-H Oxidation. J. Am. Chem. Soc. 2013, 135, 9797. (g) Liu, L.; Zhu, M.; Yu, H.-T.; Zhang, W.-X.; Xi, Z. Organocopper(III) Spiro Complexes: Synthesis, Structural Characterization, and Redox Transformation. J. Am. Chem. Soc. 2017, 139, 13688. (h) Zhang, Q.; Liu, Y.; Wang, T.; Zhang, X.; Long, C.; Wu, Y.-D.; Wang, M.-X. Mechanistic Study on Cu(II)-Catalyzed Oxidative Cross-Coupling Reaction between Arenes and Boronic Acids under Aerobic Conditions. J. Am. Chem. Soc. 2018, 140, 5579. (i) Kim, H.; Heo, J.; Kim, J.; Baik, M.-H.; Chang, S. Copper-Mediated Amination of Aryl C-H Bonds with the Direct Use of Aqueous Ammonia via a Disproportionation Pathway. J. Am. Chem. Soc. 2018, 140, 14350. (22) (a) Sokolov, V. I.; Troitskaya, L. L.; Reutov, O. A. Asymmetric cyclopalladation of dimethylaminomethylferrocene. J. Organomet. Chem. 1979, 182, 537. (b) Ryabov, A. D.; Sakodinskaya, I. K.; Yatsimirsky, A. K. Kinetics and mechanism of ortho-palladation of ringsubstituted NN-dimethylbenzylamines. J. Chem. Soc., Dalton Trans. 1985, 2629. (c) GóMez, M.; Granell, J.; Martinez, M. Variable-Temperature and -Pressure Kinetics and Mechanism of the Cyclopalladation Reaction of Imines in Aprotic Solvent. Organometallics 1997, 16, 2539. (d)

ACS Catalysis

Mota, A. J.; Dedieu, A.; Bour, C.; Suffer, J. Cyclocarbopalladation Involving an Unusual 1,5-
Palladium Vinyl to Aryl Shift as Termination Step: Theoretical Study of the Mechanism. J. Am.
<i>Chem. Soc.</i> 2005, 127, 7171. (e) Garcia-Cuadrado, D.; Braga, A. A. C.; Maseras, F.;
Echavarren, A. M. Proton Abstraction Mechanism for the Palladium-Catalyzed Intramolecular
Arylation. J. Am. Chem. Soc. 2006, 128, 1066. (f) Lafrance, M.; Rowley, C. N.; Woo, T. K.;
Fagnou, K. Catalytic Intermolecular Direct Arylation of Perfluorobenzenes. J. Am. Chem. Soc.
2006, 128, 8754. (g) Maleckis, A.; Kampf, J. W.; Sanford, M. S. A Detailed Study of Acetate-
Assisted C-H Activation at Palladium(IV) Centers. J. Am. Chem. Soc. 2013, 135, 6618 and
references therein. Additionally, an alternative electrophilic concerted metalation-
deprotonation (eCMD) mechanism was recently proposed. (h) Wang, L.; Carrow, B. P.
Oligothiophene Synthesis by a Distinct, General C-H Activation Mechanism: Electrophilic
Concerted Metalation-Deprotonation (eCMD). <i>ChemRxiv</i> DOI: 10.26434/chemrxiv.7496306.v2.
(23) Chan, L.; Mcnally, A.; Toh, Q. Y.; Mendoza, A.; Gaunt, M. J. A counteranion triggered
arylation strategy using diaryliodonium fluorides. Chem. Sci. 2015, 6, 1277.
(24) Fujimoto, T.; Ritter, T. PhenoFluorMix: Practical Chemoselective Deoxyfluorination of
Phenols. <i>Org. Lett.</i> 2015 , <i>17</i> , 544.

ACS Catalysis

TOC Graphic:

ACS Catalysis

