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Chiral diphosphines are the most frequently used ligands in
asymmetric catalysis.[1] In contrast, chiral secondary phos-
phine oxides (SPOs) are little explored as ligands. While their
chemical and physical properties are well known, their use in
asymmetric catalysis is still in its infancy.[2]

SPOs are stable molecules which exist in equilibrium
between two tautomeric forms:[3] the preferred pentavalent
phosphine oxide and the trivalent phosphinous acid. When
two different substituents are attached to the phosphorus
atom, a configurationally stable, P-chiral group results which
can coordinate to metals either through the phosphorus atom
or through the oxygen atom.

To date, only a few examples of asymmetric catalytic
reactions with chiral SPOs have been described.[2] Ph-
(tBu)P(O)H, a monodentate P-chiral SPO gave approxi-
mately 80% ee in the palladium-catalyzed allylic alkylation,[4]

while over 90 % ee was obtained with P-chiral diamino
phosphine oxides.[5] In asymmetric hydrogenation, Rh and Ir
complexes of monodentate chiral SPO ligands gave only
moderately active and selective catalysts (ee values up to
85%).[2c,6]

We thought that these somewhat disappointing results
might be due to an insufficient affinity of SPOs for Rh, Ir, or
Ru centers, the typical metals used in asymmetric catalytic
hydrogenations. Our idea was therefore to combine an SPO
with a PR2 substituent which should not only lead to stronger
coordination to the metal center but also should give better

defined complexes. To avoid cumbersome resolution proce-
dures[2c,6, 7] we used either a chiral backbone or a chiral
substituent, so that the chiral SPO unit could be built up in
diastereoselective reactions (Scheme 1).

Herein we present results for selected members of two
SPO–P ligand families based on a chiral ferrocenyl backbone
and a menthyl substituent, respectively (Scheme 1). The first
approach leads to ligands structurally similar to the well
known Josiphos[8] (therefore called JoSPOphos) while the
second gives menthyl derivatives (called TerSPOphos since
other terpene moieties are feasible). Both ligand families are
modular, allowing the ligand properties to be tuned by the
choice of the R and R’ groups. First tests showed that these
novel ligands give excellent enantioselectivities and high
turnover numbers for the hydrogenation of a variety of
functionalized alkenes.

Two routes were developed for the preparation of the
JoSPOphos ligands (Scheme 2). In route 1 the phosphine
group was introduced before the SPO group, starting from
(R)-N,N-dimethyl-1-[(S)-2-bromoferrocenyl]ethylamine (3),
obtained by lithiation/bromination of the (R)-Ugi amine.[9]

The dimethylamino group was exchanged for the desired PR2

group to give ferrocenyl phosphine bromides 4 with retention
of configuration. JoSPOphos ligands 1 a–d were obtained by
treating 4a or 4b with BuLi at low temperature, subsequent
addition of the chosen dichlorophosphine, and finally hydrol-
ysis with water. Since surprisingly the SPO moiety withstood

Scheme 1. Concept and generic structures of SPO–P ligands.
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heating in acetic acid, the “reverse” procedure, that is, first the
introduction of the SPO group to give 5, and subsequent
exchange of the NMe2 moiety, was another option (route 2).
In this way the lithiation/bromination step and the isolation of
3 could be avoided.

In both variants, the JoSPOphos ligands 1 were obtained
in good yields with a diastereomeric ratio of typically around
10:1 and purified either by crystallization or by chromatog-
raphy on silica gel. While the stereogenic carbon atom (R-
configuration) and the ferrocene ring (Sp-configuration) had
the same absolute configuration in both routes (controlled by
the absolute configuration of the Ugi amine), the configu-
ration of the SPO group depended on the nature of R’. With
R’= Ph (1b and 1d), both routes yielded preferentially RSPO.
In contrast, for R’= tBu (1a and 1c), route 1 gave RSPO

whereas route 2 gave mainly SSPO isomers allowing the
controlled preparation of either epimer. Variation of the
hydrolysis conditions[10] in route 2 also gave access to a small
sample of the SSPO ligand 1b’.

The absolute configuration of all the JoSPOphos ligands,
as well as the coordination mode (P versus O coordination)
were determined by single-crystal X-ray analysis of a rhodium
norbornadiene (nbd) tetrafluoroborate complex of ligand
(SSPO)-1a’ and of a ZnBr2 complex of ligand (RSPO)-1b.[11] As
expected, the oxophilic zinc ion is coordinated to the oxygen
atom in the phosphine oxide but the coordination behavior of
rhodium is more subtle. Of particular interest was the

comparison of ligands 1a and 1a’ which differ only in the
absolute configuration of the SPO moiety. The Rh complex of
1a (prepared with [Rh(nbd)2]BF4) gave a 31P NMR spectrum
with two doublets of doublets at d = 113.1 ppm and d =

58.4 ppm (both JRhP = 165 Hz, JPP = 35 Hz), showing that the
Rh center is coordinated to both phosphorus atoms. With
ligand 1a’ a P,P complex giving rise to two doublets of
doublets at d = 132.3 ppm and d = 57.9 ppm (both JRhP =

168 Hz, JPP = 39 Hz) as well as a P,O complex (PR2: doublet
of doublet at d = 40.5 ppm; JRhP = 174 Hz, JPP = 2 Hz; SPO:
doublet at d = 66.2 ppm; JPP = 2 Hz) was detected. We assume
that the different behavior of 1a and 1 a’ is due to the steric
interactions of the tert-butyl group of the SPO moiety and the
ferrocenyl backbone (see Scheme 3).

The TerSPOphos ligands 2a–c were prepared starting
from 2-bromoiodobenzene (6) which was metallated and then
treated with a chlorophosphine to give 7 (Scheme 4).
Lithiation of 7 and reaction with dichloro[(�)-menthyl]phos-
phine[12] yielded the chlorophosphine intermediates which
were hydrolyzed with 0.1m NaOH to give the SPO–P ligands
in good yields and with diastereomeric ratios of around 10:1.
The pure ligands 2a–c were obtained by recrystallization or
column chromatography. A single-crystal X-ray analysis of a
ZnBr2 complex of ligand 2b allowed the absolute config-
uration of the major epimer of 2a–c to be assigned as
(SSPO).[11] Also in this case, the zinc ion coordinates to the
oxygen atom.

The ligands were tested in hydrogenation experiments,
using standard substrates (Scheme 5) to show the scope and
limitations for their synthetic applications. Most tests were
carried out with a Symyx HTS robot which uses plates with

Scheme 2. Synthesis and absolute configuration of the JoSPOphos
ligands 1a–d. Reagents and conditions: a) 1. sBuLi, Et2O, 2. (BrF2C)2

or (BrCl2C)2; b) HPR2, AcOH; c) 1. nBuLi, TBME; 2. Cl2PR’; 3. hydroly-
sis; d) 1. sBuLi, Et2O; 2. Cl2PR’; 3. hydrolysis; e) HPR2, AcOH. TBME=

tert-butyl methyl ether.

Scheme 3. Coordination modes of ligands 1a and 1a’ with Rh.

Scheme 4. Synthesis of the TerSPOphos ligands 2a–c. Reagents and
conditions: a) 1. iPrMgCl, THF; 2. ClPR2; b) 1. nBuLi, THF; 2. (l-men-
thyl)PCl2; 3. hydrolysis.
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96 vials (for reaction conditions see Table 1). Selected hydro-
genations at higher substrate to catalyst ratios (s/c) were
carried out in 10–50 mL reactors.

Most experiments were performed with six functionalized
alkenes and selected results are shown in Table 1 for rhodium
JoSPOphos (entries 1–7) and rhodium TerSPOphos com-
plexes (entries 8–10). Both ligand families show excellent
catalytic performance and many catalysts gave high enantio-
selectivities with several substrates. Notably, ligand 1b gave
ee values in the range of 90 % to over 99% with all substrates,
which is quite exceptional. Of special interest is the fact that
E- and Z-EAC afford products with the same absolute
configuration, allowing the use of E/Z-mixtures.[13] Ligand 1b
with a phenyl group on the SPO moiety and tBu groups on the
phosphine outperforms ligand 1 a where the phenyl and tBu
groups are transposed. Ligand 1b also outperforms, ligands
1c and 1d which have only tBu or Ph groups, respectively. The
absolute configuration of the phosphorous center seems to
dominate the sense of induction: in almost all cases tested to
date, the product absolute configuration changes when going
from RSPO to SSPO ligands. The influence of the other
stereogenic units is less predictable, but it appears that for
R’= tBu the (R,Sp,SSPO) isomer (e.g. 1c’) is superior to the
RSPO isomer (e.g. 1c) whereas for R’= Ph, the reverse
behavior is observed

Similar results were obtained for the TerSPOphos ligands.
Also in these cases most substrates are hydrogenated with
ee values in the range of 94% to over 99 %. The fact that
ligands 2a and 2 b with PAr2 groups give similar enantiose-
lectivities to 2c (R = Cy) indicates that the electronic nature
of the phosphine group hardly affects the ee value.

A few reactions with MAA and DMI were carried out in
50 mL reactors with s/c = 200–1000 at a hydrogen pressure of
1 bar. For all the ligands, the reactions were usually complete
within 5 min (implying turnover frequencies (TOF) in the
range of 2000–20000 h�1), showing that both types of ligands
yield very active catalysts for disubstituted alkenes.

Ligand families 1 and 2 were also tested for the
ruthenium- and rhodium-catalyzed hydrogenation of a
series of a-and b-ketoesters. The results indicate that the
hydrogenation of such substrates with SPO–P ligands is not

straightforward and that the struc-
ture/selectivity match is quite
narrow. The best results were
obtained with JoSPOphos ligand
1a (R’= tBu), for the ruthenium-
catalyzed hydrogenation of EOP
(92 % ee) and the rhodium-cata-
lyzed hydrogenation of KPL
(89 % ee). On the positive side, a
catalyst formed in situ from 1a and
[{RuCl2(p-cymene)}2] was highly
active and productive, giving com-
plete conversion within less than
17 h for the hydrogenation of EOP
at a s/c of 5000.

In conclusion, the combination
of an SPO and a phosphine group
leads to ligands which form highly
effective hydrogenation catalysts.
The use of a chiral backbone or a
chiral substituent at the SPO center

allows easy access to this modular class of ligands. We have
found that SPO–P ligands can coordinate to metal centers
either through both phosphorus atoms or through one
phosphorus and an oxygen atom. Although at present we do
not have any experimental evidence, we assume that the P,P
complex rather than the P,O complex is the active catalyst.
Our results show that the corresponding Rh and Ru
complexes exhibit excellent activities and enantioselectivities
in the hydrogenation of functionalized alkenes and moderate
enantioselectivity for ketoesters. Thus the combination of a
SPO and a phosphine unit in a chelating ligand appears to be a
promising approach to generate high-performing ligands.
Preliminary work has shown that this concept can be
extended to analogues of 1 with other chiral backbones,
such as biaryls, or analogues of 2 with different aryl systems or
other terpenes as the chiral moiety.
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Scheme 5. Test substrates for hydrogenation.

Table 1: Enantioselectivities obtained with JoSPOphos and TerSPOphos in rhodium-catalyzed hydro-
genations of six functionalized alkenes (see Scheme 5).[a]

Entry Ligand R (P) R’ (SPO) Config. SPO MAC AC MAA DMI Z-EAC E-EAC

1 1a Ph tBu R +38[b] +98[b] + 71[c] + 95[c,f ] + 25[c,f ] �96[b,f ])

2 1a’ Ph tBu S �97[b] �99[b] �97[b] �98[b] + 61[c] + 94[c]

3 1b tBu Ph R +90[b] +98[b] + 99[d] + 94[c] �98[c] �99[c]

4 1b’ tBu Ph S – – – �84[c] �1[c] + 70[c]

5 1c tBu tBu R +75[b] �11[b] + 94[c] + 19[c] �51[c] �58[b]

6 1c’ tBu tBu S �99[b] �99[b] �98[b] �93[c] + 76[b] + 76[b]

7 1d Ph Ph R +85[b] +98[b] + 93[c] + 99[b] �72[b] �90[b]

8 2a l-Men Ph S – – �95[e] – – –
9 2b l-Men 4-Tol S �96[b] �99[b] �98[b] �98[b] + 68[b] + 94[c]

10 2c l-Men Cy S �94[b] �98[b] �96[b] – – –

[a] ee values �90 % are in bold. The reactions were performed at room temperature, 1 bar H2 pressure,
with a s/c of 100 giving complete conversions in less than 2 h. The catalysts were prepared in situ by
mixing 1.1 equivalent ligand with 1 equivalent of a rhodiumprecursor. [b] Rh precursor= [Rh(nbd)2]BF4;
solvent = EtOH. [c] Rh precursor= [Rh(nbd)2]BF4; solvent = THF. [d] Rh precursor= [Rh(cod)Cl]2 ;
solvent = 1,2-dichloroethane. [e] As [b] but s/c 200. [f ] Reaction time 14 h. nbd = norbornadiene,
cod = 1,5-cyclooctadiene.
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