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Abstract 

A convenient and efficient esterification method that used a modified Yamaguchi reagent 

(TCB-DMAP) and avoided to use not only intractable acid chloride but also acid 

anhydrides was proposed. The reaction mechanism was described by FT-IR spectroscopy 

and supported by a density functional theory calculation. 

 

 

KEYWORDS: DMAP, acylation, esterification, condensation, acylpyridinium salt. 

 

INTRODUCTION 

The effectiveness of 4-dimethylaminopyridine (DMAP) as a highly nucleophilic base 

catalyst has been reported by both Steglich and Höfle–Litvinenko–Kirichenko.[1] Because 

DMAP can be utilized in a variety of group-transfer reactions, such as the acylation of 

alcohols and amines, it has been studied widely.[2] Notably, Yamaguchi and co-workers 
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have reported a convenient method for the preparation of carboxylic esters and lactones 

in the presence of triethylamine and DMAP using 2,4,6-trichlorobenzoyl chloride as a 

bulky acid moiety for the formation of the intermediary mixed anhydride.[3] Recently, a 

regioselective version of the Yamaguchi esterification method was reported by 

SantaLucia and Dhimitruka.[4] In addition, Shiina and co-workers developed an effective 

esterification method using 2-methyl-6-nitrobenzoic anhydride, a reagent similar to the 

Yamaguchi reagent.[5] It is estimated that these esterification methods proceed via 

intermediates including a mixed anhydride and an N-acylpyridinium salt with an 

activated acyl group.[6] Generally, acid chlorides and acid anhydrides are intractable in 

condensation reactions, such as peptide bond formation and esterification, because acid 

chlorides react with both carboxylates and nucleophiles, such as alcohols and amines. 

 

We demonstrate a convenient and practical protocol for these esterification methods via 

mixed anhydride and an N-acylpyridinium salt with an activated acyl group. For this 

purpose, we prepared the modified Yamaguchi reagent 2′,4′,6′-trichlorobenzoyl-4-

dimethylaminopyridinium chloride (TCB-DMAP) (1), which is a stable crystal in 

atmosphere and hence handled easily. In addition, we report the development of an 

effective method for monitoring esterification by IR spectroscopy and density functional 

theory (DFT) calculation[7], and we apply the results to clarify the esterification 

mechanism in the presence of TCB–DMAP. 

 

RESULTS AND DISCUSSION 
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First, we prepared TCB-DMAP by the following method. To a solution of DMAP (5.5 

mmol) in 20 mL of dry THF was added 2,4,6-trichlorobenzoylchloride (5mmol), and the 

mixture was stirred for 24 h. The precipitate was collected by suction filtration, washed 

with THF, and recrystallized from THF-CH2Cl2 mixed solvent to give TCB-DMAP (90% 

yield). This reagent is very stable crystal avoiding humidity. It has been stored in the 

desiccator for several years, and the activity is no change at all. 

 

A typical procedure for esterification is as follows. TCB-DMAP (0.26 mmol) was added 

to a solution of carboxylic acid (0.20 mmol) and N′,N′-diisopropylethylamine (DIPEA) 

(0.26 mmol) in anhydrous toluene (2 mL) and stirred for a minute. l-menthol (0.20 mmol) 

was added to the mixture over a period of 1 min and then stirred for 24 h at room 

temperature. In every case, this reaction proceeded at room temperature to give the 

corresponding carboxylic esters in high yields from equimolar amounts of carboxylic 

acids and alcohols, such as the benzyl, allyl, and secondary aliphatic alcohols (Table 1). 

This method is also applicable to various carboxylic acids including �,�-unsaturated and 

aromatic carboxylic acids, with alcohols (benzyl, allyl and secondary aliphatic alcohols) 

using TCB-DMAP to obtain the corresponding carboxylic esters. Therefore, various 

carboxylic esters can be obtained in good to high yields under mild reaction conditions. 

 

In addition, this method was applied to the synthesis of 3R-[3R-(3R-

hydroxybutyryloxy)butyryloxy] butyric acid (23), a pheromone of Linyphia triangularis8, 

which was obtained in an overall good yield (Scheme 1). 
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The DMAP-supported reaction pathway in the esterification reaction using TCB-DMAP 

was then studied by evaluating the time-dependent changes in the FT-IR spectrum. 

Specifically, the absorption bands associated with C=O bond stretching were observed 

(Figure 1). TCB-DMAP in acetonitrile displays a stretching vibration at 1751.2 cm−1 

corresponding to the C=O bond stretching of the N-acylpyridinium salt. The FT-IR 

spectrum of a mixture of phenylpropionic acid, TCB-DMAP, and DIPEA in acetonitrile 

showed the presence of the mixed anhydride, 2,4,6-trichlorobenzoic phenylpropionic 

anhydride (II) (1818.3 cm−1), and the acylpyridinium salt, 4-dimethylamino-1-(3-

phenylpropionyl)pyridinium salt (III) (1767.7 cm−1). The IR spectral changes that 

occurred upon addition of l-menthol to the mixture are shown in Figure 1. The increase in 

the new absorbance corresponding to a stretching band at 1724.4 cm−1 is due to the 

accumulation of the product (−)-menthyl 3-phenylpropionate (IV) in the reaction 

mixture. Concurrently, the intensity of the bands for (II) and (III) decreased 

dramatically. These spectral changes were associated with the absorption bands of the 

alternatively synthesized mixed anhydride (2,4,6-trichlorobenzoic phenylpropionic 

anhydride) and N-acylpyridinium salt (4-dimethylamino-1-(3-

phenylpropionyl)pyridinium chloride) and their conversion to the product ester (IV). In 

this way, the carboxylate anion attacks the carbonyl group of TCB-DMAP, which is the 

most activated site at the beginning of the reaction. These results suggest that the 

esterification mechanism with TCB-DMAP favors the formation of a mixed anhydride 

derived from the carboxylic acid and the 2,4,6-trichlorobenzoyl group that is released 

from TCB-DMAP, followed by subsequent reacylation of DMAP to form the N-

acylpyridinium salt. 
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Further, we have discussed for absorption of IR spectrum by use of quantum calculation. 

Molecular orbital calculations for mixed anhydride (II), DMAP, and l-menthol were also 

performed using DFT, as implemented in the DMol3 package from Accelrys Inc (Figure 

2). The delocalized lowest unoccupied molecular orbital (LUMO) was observed near the 

C1, and 2,4,6-trichlorophenyl groups. The localized LUMO orbital was observed on C15. 

Therefore, nucleophiles such as DMAP or alcohols are more likely to attack the localized 

carbonyl carbon C15 than the delocalized C1 (Figure 2). In addition, the energy levels of 

the highest occupied molecular orbital (HOMO) of DMAP and l-menthol were also 

calculated. The energy levels of the HOMO for DMAP and the HOMO for l-menthol 

were −5.7 and −7.0 eV, respectively. Thus, the nucleophilicity of the N-atom of the 

pyridine ring of DMAP with respect to C15 is greater than that of the hydroxyl group of 

l-menthol. Therefore, in this DMAP-catalyzed esterification, nucleophilic alcohol does 

not react to C15 of the mixed anhydride. The released DMAP attacks C15 and gives N-

acylpyridinium salt. 

 

CONCLUSIONS 

In conclusion, we demonstrated a modified Yamaguchi esterification method using TCB-

DMAP which avoided the use of acid chlorides and acid anhydrides. Due to the crystal 

stability of TCB-DMAP, this protocol provides a convenient one-pot procedure that is 

easily handled. Furthermore, we elucidated the mechanism of this esterification reaction 

using the modified Yamaguchi reagent by time-dependent FT-IR spectroscopy and DFT 

calculations. This esterification proceeds via a mixed anhydride and an acylpyridinium 
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salt. These results support the catalytic mechanism for DMAP that has been proposed on 

the basis of other studies completed to date.9 

 

EXPERIMENTAL 

1H NMR spectra were recorded on a 500 NMR spectrometer operating at JAOL ECA500, 

respectively in CDCl3 unless otherwise noted. Coupling constant (J) values are reported 

in Hertz. Mass Spectra (MS) were performed at JAOL JMS-700 MStation at the 

University of Kitasato using chemical ionization or electron impact techniques. HPLC 

experiments were performed on a LC solution (� = 254 nm) system using a wakosil-II 

3C18 HG (3.0 mm φ x 75 mm) column. Assay yields calculated by HPLC using an 

internal standard method under 40 ºC, 0.8 mL/min. The calibration curve was prepared 

from various concentrations of each esters. Infrared (IR) spectra were obtained on a 

Perkin Elmer Spectrum 100 FT-IR spectrometer. Compounds were visualized located by 

UV (254 nm) and spraying the TLC plate with a solution of phosphomolybdic acid 

followed by heating until color developed. Optimized geometry and molecular orbital 

were calculated by DFT method using the Materials Studio DMol3 package of Accelrys 

Inc. First, optimized geometry was obtained using the Perdew-Wong GGA functional 

(PWC) and double numerical puls d-functional (DND) basis set. Second, the optimized 

geometry obtained were further calculated for molecular orbital using the Becke 

exchange puls Lee-Young-Parr correlation (B3LYP) and the double numerical plus 

polarization (DNP) basis set. 
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General Method 

To a solution of carboxylic acid (0.20 mmol) and DIPEA (0.26 mmol) in 2 mL of 

anhydrous toluene was added TCB-DMAP (1) (0.26 mmol) and stirred for 1 min. The 

mixture was added alcohol (0.20 mmol) over 1 min and stirred for 24 h at room 

temperature. The portion (50 �L) of the mixture was added coumarin as internal standard 

substance, and diluted with 2 mL of acetonitrile / H2O (5 : 1). The solution was analyzed 

by HPLC using an internal method of coumarin. 

 

Synthesis Of (R)-(−)-2-{(R)-(−)-2-Carboxy-1-Methylethoxy Carbonyl}-1-Methylethyl 

(R)-(−)-3-Hydroxybutyrate (23) 

(22) (0.418 mmol) was dissolved in 10 mL of EtOH. To the solution was added Pd/C 

(5%) (10 mg), and stirred under H2 for 24 h. The residue was filtrated and concentrated in 

vacuo to give colorless oil (23) (>99% yield). 

 

1H NMR (500 MHz, CDCl3) δ : 1.25 (d, 3H, J=6.9 Hz), 1.30 (m, 6H), 2.41-2.64 (m, 6H), 

4.29 (m, 1H), 5.37 (m, 2H); 13C NMR (500 MHz, CDCl3) δ 173.5, 171.9, 170.0, 68.1, 

67.8, 64.9, 43.1, 41.2, 40.8, 22.4, 20.2, 20.1; HRMS [M+H]+ calcd for C12H21O7 

277.1287, found 277.1291; [�]D
24 = -23.8 (c 1.0, CHCl3) 

 

SUPPORTING INFORMATION 

Supplemental data for this article can be accessed on the publisher's website. 
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Table 1 Synthesis of various esters by TCB-DMAP 

entry R1COOH R2OH Product A (%)a

1 Ph(CH2)2COOH (-)-Menthyl-OH 2 99 

2 Ph(CH2)2COOH BnOH 3 94 

3 Ph(CH2)2COOH 1-Phenylethyl-OH 4 88 

4 Ph(CH2)2COOH (E)-Cinnamyl-OH 5 93 

5 PhCOOH (-)-Menthyl-OH 6 95 

6 PhCOOH BnOH 7 88b 

7 PhCOOH 1-Phenylethyl-OH 8 88 

8 PhCOOH (E)-Cinnamyl-OH 9 77 

9 (E)-PhCH=CHCOOH (-)-Menthyl-OH 10  >99 

10 (E)-PhCH=CHCOOH BnOH 11 91 

11 (E)-PhCH=CHCOOH 1-Phenylethyl-OH 12 90 

12 (E)-PhCH=CHCOOH (E)-Cinnamyl-OH 13 84 

aAssay yields calculated by HPLC using an internal standard method of coumarin 

bIsolated yield 
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Scheme 1 Synthesis of a Linyphia triangularis pheromone 
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Scheme 2 Detailed proposed mechanism esterification using TCB-DMAP 
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Figure 1 IR spectra of the intermediates generated in esterification using TCB-DMAP. 
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Figure 2 Delocalized LUMO+1 of the mixed anhydride (II).  Method : B3LYP/DNP(6-

31G*)//B3LYP/DNP(6-31G*) 

 

D
ow

nl
oa

de
d 

by
 [

E
in

dh
ov

en
 T

ec
hn

ic
al

 U
ni

ve
rs

ity
] 

at
 1

3:
38

 2
4 

Ju
ne

 2
01

4 


