
IEEE Communications Magazine • January 200094

JAIN: A New Approach to Services in
Communication Networks

0163-6804/00/$10.00 © 2000 IEEE

ABSTRACT

J A I N, a set of integrated network APIs for
the Java platform, provides a framework to build
and integrate solutions (or “services”) that span
across packet (e.g., IP or ATM), wireless, and
PSTN networks. The objective of JAIN is to pro-
vide service portability, convergence, and secure
access (by services residing outside of the network)
to such integrated networks. JAIN is defined and
specified by a large number of participating com-
munication companies (the JAIN Community),
and according to a well-documented process (the
Java Community Process or JCP). The objective of
the JAIN Community is to create an open market
for services across integrated networks using Java
technology. This article is the first of a series in this
issue of IEEE Communications Magazine a n d
serves as an introduction to the other articles. The
next section provides the JAIN business case. The
article then summarizes how the JAIN Community
works, and briefly introduces how the JAIN Com-
munity is organized. The next two sections are of a
more technical nature and explain how separate
JAIN work items fit together. In particular, we
provide the rationale for the currently supported
levels of abstraction (in terms of session/call signal-
ing models) in JAIN. We look at possible imple-
mentation scenarios. Conclusions are contained in
the last section. For more details on several of the
JAIN Community work items, please refer to the
other JAIN-related articles [1–3] in this issue of
IEEE Communications Magazine.

THE JAIN BUSINESS CASE
Java computing starts with a highly structured,
strongly typed, object-oriented computing lan-
guage, which is compiled not to native machine
code, but rather to a virtual machine “byte code.”
When ready for execution, the byte code is
dynamically linked and then translated in a virtual
machine to the native machine code. The dynam-
ic linking and byte code translation ensures com-
puter programming portability where a program
or sections of a program can be written once on
one platform and then run over any other plat-
form that contains a virtual machine. This
requires no recoding, recompilation, or relinking.

The high-portability feature of Java is bal-
anced against performance and runtime seman-
tic interface error checking. For performance,
the byte code or source may be compiled to
native machine code. For semantic interface

checks, the dynamic linker may be replaced with
a static linker. In either case, it is a trade-off
between portability, performance, and runtime
error checking. For the majority of applications
this sacrificing of portability is not needed, and
for the few exceptions the transition is simple.

JAIN builds on Java portability by standardiz-
ing the signaling layer of the communications
networks into the Java language, and defines a
communications framework for services to be
created, tested, and deployed. The strengths of
JAIN are in service portability, network conver-
gence, and secure network access:
• Service portability: Technology and applica-

tion development are currently constrained
by proprietary interfaces. Portability of
applications is almost nonexistent. This
increases application development cost,
time to market, and maintenance require-
ments. The JAIN approach is to reshape
proprietary interfaces into uniform Java
interfaces delivering portable applications.

• Network convergence: Call or session legs for
most of today’s applications and services typi-
cally span only a single type of network —
public switched telephone network (PSTN),
packet, or wireless — although clearly gate-
ways between these networks do exist. The
higher-level (discussed later) JAIN call mod-
els include facilities for observing, initiating,
answering, processing, and manipulating
calls, where a call is understood to include a
multimedia, multiparty, multiprotocol session
over the underlying integrated network.

• Secure network access: Communication
applications and services run either inside
the operator’s trusted network or complete-
ly outside this network. The JAIN Parlay
interface enables untrusted services, residing
outside the network, to directly access net-
work resources to carry out specific actions
or functions inside the integrated network.
JAIN creates a new environment for develop-

ers and users of communication services to build
systems on a set of standards guaranteed to run
on conformant networks. The market opportuni-
ty for new services in such an environment has
Internet-like growth potential. Merging the rapid
service creation and deployment model in the
Internet space and the proven quality of service
of the PSTN creates a new market scenario.

JAIN further enhances the convergence of
the Internet and PSTN by providing controlled
access of untrusted services to the available

John de Keijzer, Douglas Tait, and Rob Goedman, Sun Microsystems, Inc.

JAVA IN TELECOMMUNICATIONS

IEEE Communications Magazine • January 2000 95

functionality and intelligence inside the net-
works. Parlay (and JAIN Parlay) services become
network-operator-independent, making it attrac-
tive to develop interesting services by service
providers and third parties. (A detailed descrip-
tion of JAIN Parlay can be found in [3]).

The focus of the JAIN effort is to take the
telecommunications market from many propri-
etary systems to a single open, distributed envi-
ronment, not unlike the Internet today, able to
host a large variety of services while still main-
taining quality and reliability of service. By
opening the network to Java applications, an
opportunity is created to deliver thousands of
portable, integrated services rather than the
dozens currently available.

JAIN technology is based on Java component
(Bean) software: components can be added, taken
away, enhanced, assembled, shared, or redistribut-
ed (even geographically) in a dynamic running sys-
tem. This allows services and features to be added,
updated, and deleted in a live environment.

The removal of proprietary interfaces opens
markets where network equipment providers
(NEPs), independent software vendors (ISVs),
protocol stack vendors, service providers, and carri-
ers will be able to build and sell a variety of Java-
technology-adapted components. Service providers
and NEPs will then be able to select “best of
breed” JAIN-conformant products from different
vendors on the basis of functionality and value.

This open value chain market model stimu-
lates the reuse of existing components and the
development of additional or missing functionali-
ty — maximizing efficiency as well as innovation.
It also opens the market to innovative new play-
ers. The next-generation architecture provided by
JAIN creates a level playing field for deploying
new services. This model is best served when all
levels of the communications industry participate:
hardware companies, stack providers, NEPs, and
network and service providers. This is exactly
what is happening in the JAIN Community.

HOW THE
JAIN COMMUNITY WORKS

The Java Community Process (JCP) is a formal
process for developing Java extensions. The JCP
has shown to produce high-quality specifications
in “Internet time” using an inclusive, consensus-
building process that not only delivers the speci-
fication, but also the reference implementation
and its associated suite of compatibility tests.

The best way to develop a specification is to
start with a handful of industry experts who have
a deep understanding of the technology in ques-
tion, and then have a strong technical lead work
with them to create a first draft. Consensus is
then built using an iterative review process that
allows an ever-widening audience to participate,
and to see their comments and suggestions incor-
porated into successive draft versions of the
specification prior to final release.

This formal process was designed to be fast,
flexible, and adaptable to the wide variety of
work styles present in the community today. An
independent auditing firm may audit the pro-
cess. All participants are required to sign a Java

Specification Participation Agreement (JSPA)
with Sun. The JSPA fundamentally assigns the
copyright of the specification to Sun in order to
enable Sun to enforce a single version of the
specification at any time. Steps in specification
development follow the guidelines set forth in
the JCP. A summary is provided here:
• Propose a new specification through a Java

Specification Request
• Form the Expert Group to write the draft

specification
• Review and refine the Participant Draft by

all JSPA Participants
• Public review
• Public release
• Maintenance

In building on the JCP, JAIN leverages the
requirements for participants and the procedures
for driving community approval on specifications.
More information on the JCP can be found at
h t t p : / / j a v a . s u n . c o m / a b o u t J a v a / c o m m u n i t y p r o c e s s .

THE JAIN COMMUNITY
ORGANIZATIONAL STRUCTURE

JAIN is a set of integrated network APIs for the
Java platform and an environment to build and
integrate JAIN components into services or
applications that work across PSTN, packet (e.g.,
IP or asynchronous transfer mode, ATM), and
wireless networks.

The JAIN approach integrates wireline, wireless,
and packet-based networks by separating service-
based logic from network-based logic. Thus, from
this point of view, JAIN consists of two layers, appli-
cation and protocol. This is illustrated in Fig. 1.

Based on the JAIN layered approach illus-
trated in Fig. 1, the JAIN program consists of
two expert groups and several work groups:
• On the protocol layer, the Protocol Expert

Group (PEG) standardizes interfaces to IP,
wireline, and wireless signaling protocols.
These protocols include TCAP, ISUP,
INAP, MAP, SIP, MGCP, and H.323.

• On the application layer, the Application
Expert Group (AEG) addresses recommen-
dations and specifications for secure net-
work access (JAIN Parlay), connectivity
management, JAIN session/call control
(JCC/JCAT), and a JAIN service creation
and carrier grade service logic execution
environment (JSC/SLEE).

• Work groups are engaged in either develop-
ing prototype implementations (e.g., of ser-
vices or subspecifications) and/or feeding the
insights gained back into the Expert Groups.
Examples of active work groups are AT&T,
KPN, CMG, Ericsson, and NTT Comware.
The JAIN Community structure is shown in

Fig. 2.
Today, there are more than 30 companies

actively participating at various levels in the
JAIN Community.

JAIN ARCHITECTURE
The protocol layer in JAIN is based on Java stan-
dardization of specific protocols (SIP, MGCP,
H.323, TCAP, ISUP, INAP/AIN, MAP, etc.). By

JAIN builds on

Java portability

by standardizing

the signaling

layer of the

communications

networks into the

Java language,

and defines a

communications

framework for

services to be

created, tested,

and deployed.

IEEE Communications Magazine • January 200096

providing standardized protocol interfaces in a
Java object model, applications and protocol
stacks can be dynamically interchanged and, at
the same time, provide a high degree of portabil-
ity to the applications in the application layer
using protocol stacks from different vendors. A
more detailed explanation of the ongoing work in
the JAIN Protocol Expert Group is given in [1].

The application layer provides a single call (or
session) model across all supported protocols in
the protocol layer. The fundamental idea is to
provide a single state machine for multiparty, mul-
timedia, and multiprotocol sessions for service

components in the application layer. This state
machine is accessible by trusted applications that
execute in the application layer through the
JCC/JCAT API. The current proposal in the Edit
Group is to use the core part of the Java Telepho-
ny API (JTAPI) as JCC. JCAT then augments
JTAPI/JCC to provide a richer signaling model.
This is explained in much more detail in [2]. The
basic approach taken in JTAPI, with a core pack-
age and extension packages that extend the core
package, will be followed by the JCC/JCAT Edit
Group, and provides a structured and modular
way to introduce enhancements to the call model.

The application layer also supports secure
access to network resources accessible through
JAIN APIs (i.e., the application layer call model
or the individual protocols). This JAIN work
item, JAIN Parlay, is the topic of [3].

Figure 3 illustrates the three basic abstrac-
tions supported by JAIN.

An application or service at the protocol level
can talk directly to the JAIN adapters. These are
Java class methods, callbacks, events, or Java
interfaces that encapsulate the underlying
resources. The resources may be implemented in
Java, C, C++, and so on, but a JAIN-confor-
mant protocol product does provide at least the
relevant JAIN Java API. This lowest level of the
JAIN abstraction does not provide any features
to the application for dealing with different kind
of protocols; for example, an application that
needs a session spanning INAP and SIP will
have to handle both protocols. But it does pro-
vide for the same application to run on top of
protocol products from different vendors.

A service or application at the next level of

Figure 1. The JAIN layered approach.

Figure 2. JAIN Community organization.

IEEE Communications Magazine • January 2000 97

JAIN abstraction, the JAIN call control or trust-
ed services level in Fig. 3, does not have to be
aware that some of its session or call legs are
using a different protocol. Furthermore, this is,
from the point of view of a call or session, the
richest call model available in JAIN [2]. A ven-
dor providing a JCC-conformant product will
have to provide a mapping from JAIN call con-
trol to one or more protocol adapters.

In Fig. 3, the little disks ins ide the SLEE
labeled with either an S (for service) or a P (for
policy) are the core JAIN components. They are
constructed according to a component model
defined by the JAIN Service Creation (JSC) and
Service Logic Execution Environment (SLEE)
Edit Groups. Instantiations of component assem-
blies run inside the JAIN SLEE, which is
schematically illustrated in Fig. 3. This topic is
further discussed in the last section.

JAIN provides a third level of abstraction
through the JAIN Parlay interface. In Fig. 3, the
little disks outside the SLEE rectangle represent
JAIN-Parlay-based services. Earlier in this docu-
ment these were referred to as untrusted services.
JAIN Parlay acts as a firewall to protect the secu-
rity and integrity of the integrated network. Some
operators might opt to have all services, both
inside and outside their integrated network
domain, use the JAIN Parlay interface. The JAIN
Parlay interface exports some or all capabilities
available inside the integrated network to services
running inside a different security domain. A
detailed description of JAIN Parlay can be found
in [3] (see also http://www. parlay.org).

Examples of capabilities addressed by JAIN
Parlay are security, a generic call control service
(GCCS), a short messaging service (SMS),
mobility features, a discovery service, and so

Figure 3. JAIN abstractions.

Figure 4. JAIN Service Logic Execution Environment.

JAIN has chosen

an evolutionary

approach that

over time will

allow completely

new approaches

to be

incorporated.

Wherever

possible the

approach is

decoupled and

modularized to

make this easier.

IEEE Communications Magazine • January 200098

forth. A vendor of JAIN Parlay provides a map-
ping of the GCCS capabilities onto JCC and a
mapping of the JAIN Parlay security features
onto the security mechanisms supported by the
JAIN SLEE (see the last section). A full-blown
JAIN SLEE product also supports the other
capabilities exported through the JAIN Parlay
interface. From a JAIN Parlay service point of
view, JAIN Parlay executes on the same host
machine and inside the same Java Vir tual
Machine (JVM) as that service.

JAIN Parlay’s GCCS is roughly based on the
JTAPI core functionality [4]. JCC is significantly
enhanced over JTAPI through the Java Coordina-
tion and Transaction (JCAT) extension. Figure 3
also shows the vertical bar labeled OA&M. These
are a set of APIs that will provide for operational,
administrative, and maintenance aspects of a
JAIN environment [5] JAIN relies on the JMX
effort in this area (see the box “What Is JMX?”).

THE JAIN SERVICE
LOGIC EXECUTION ENVIRONMENT

The relationship between the four AEG Edit
Group work items and the JAIN SLEE is depict-
ed in Fig. 4.

Services can be written directly on top of the
JAIN protocol layer adapter APIs, JCC API, or
JAIN Parlay API. This will provide portability of
these services. Services will require and use much
more than just a call model, though; for exam-
ple, they might want to use Java’s JDBC, text-to-
speech, and JNDI APIs, to mention a few.

Furthermore, JAIN’s SLEE provides portable
support for transactions, persistence, load bal-
ancing, security, object and connection instance
pooling, and so on. This is similar to Enterprise
JavaBeans in the EJB specification [6]. The JSC

Figure 5. An example of an EJB-based JAIN implementation.

WHAT IS JMX?
JMX is an effort under the JCP to define appropriate management exten-

sions for the Java platform. JMX provides for the instrumentation level of
elements (both software and hardware), an agent layer to group instrumen-
tation-level management entities, a manager level to ease and consolidate
distributed agents, and interfaces to management applications (including SNMP
and TMN-based approaches).

A JMX manageable resource is one that has been instrumented in accordance
with the JMX Instrumentation Level Specification. It can be a business application,
a device, or the software implementation of a service or policy. A Managed
Bean, Mbean for short, is a Java object that represents a JMX manageable resource.
MBeans follow the JavaBean™ component model (see the box “What Is a
Component Model?” below) closely.

A JMX agent is an Mbean Server/Container. It will have at least one con-
necter or adaptor to communicate (e.g., using HTTP, RMI, or SNMP) and may con-
tain 1 or more management services, also represented as MBeans. The
Mbean Server is a registry for MBeans in the agent and also allows for
manipulation of those MBeans.

The JMX Manager provides one or more interfaces for management
applications to interact with the agent, distribute or consolidate manage-
ment information, and provide security. A JMX Manager can control any
number of agents, thereby simplifying highly distributed and complex man-
agement structures.

WHAT IS A COMPONENT MODEL
So what is a (software) component model? It is a set of principles that

define how solutions can be built from smaller (software) entities. In Java
these smaller entities are Beans, and examples of currently available beans
are JavaBeans, Enterprise JavaBeans, Federated Beans, and MBeans. Here I
will refer to them as *-Beans. The principles cover many aspects of the entire
lifecycle of the *-Beans, such as how individual beans can be assembled into
larger entities and ultimately into complete solutions, how entities are visible
in development tools, how *-Beans are deployed when they are needed in a
running system, how many instances are needed to obtain the right level of
performance, if the *-Beans are location-independent (in a local network or
even in a wide-area network), and if the *-Beans handle concurrent requests,
transactions, and persistence.

IEEE Communications Magazine • January 2000 99

and SLEE focus on a component model (see the
box titled “What Is a Component Model?”) over
specific implementations. EJBs (see the box on
“The EJB Component Model”) are an excellent
candidate for such a component model, but it is
certainly possible to use other component mod-
els, such as Jini [7], Jini JavaSpaces [8], Jiro
[9] or JES [10]. Most of these container struc-
tures, extended with the right features, are viable
implementation platforms for JAIN.

Figure 5 gives an example of a possible envi-
ronment for an EJB-based JAIN implementa-
tion. In the figure the application server provides
one or more types of containers for different
types of EJBs. The EJBs are the building blocks
for services. An implementation of the JAIN
SLEE can be considered an integrated network
application server.

The component model as defined for the
SLEE also supports distributed implementations
where portions of the SLEE are migrated to the
edge of the network, say, to run on a residential
gateway or even inside a consumer device.

CONCLUSION
The JAIN network topology provides carriers
with the ability to deploy next-generation net-
work services on devices inside or at the edge of
the integrated network, inc luding any Java-
enabled end-user device. Furthermore, support
for all the necessary telephony protocols that are
used between the different network elements in
intelligent networks, advanced intelligent net-
works (AIN), and IP-based (telephony) networks
is mandatory. JAIN has chosen an evolutionary
approach that over time will allow completely
new approaches to be incorporated. Wherever
possible the approach is decoupled and modu-
larized to make this easier. A concrete example
is the adoption of the JTAPI core/extension
package structure which does not make all call
models depend on a single state machine.

JAIN-compliant components do not reside on
a single server; rather, functionality is imple-
mented as a multitier, distributed application on
all signaling network elements. Such an approach
provides significant advantages for scalability,
performance, reliability, manageability, reusabili-
ty, and flexibility. The JAIN architecture lever-
ages the p latform independence of Java.
However, it is also designed to be distributed
and independent of any specific protocol or mid-
dleware infrastructure.

JAIN technology is changing the communica-
tions market from many proprietary closed sys-
tems to a single network architecture where
services can rapidly be created and deployed.

For more information, including availability
of completed portions of the speci ficat ions,
please consult the JAIN Web site: http://java.sun.
com/products/jain.

REFERENCES
[1] R. R. Bhat and R. Gupta, “JAIN Protocol APIs,” I E E E

Commun. Mag., this issue.
[2] R. Jain, F. M. Anjum, P. Missier, and S. Shastry, “Java

Call Control, Coordination, and Transactions,” I E E E
Commun. Mag., this issue.

[3] S. Beddus, G. Bruce, and S. Davis, “Opening Up Net-
works with JAIN Parlay,” to appear, IEEE Commun.
Mag., Apr. 2000.

[4] Call Control Interoperability Working Group, Enterprise
Computer Telephony Forum: http://www.ectf.org/ectf/
tech/ccwg.htm

[5] Java Management Extensions: http:// java.sun.com/
products/JavaManagement

[6] Enterprise JavaBeans: http://java.sun.com/products/ejb
[7] Jini: http://java.sun.com/products/jini
[8] JavaSpaces: http://java.sun.com/products/JavaSpaces
[9] Jiro: http://www.jiro.org
[10] JES: http://www.sun.com/software/embeddedserver/

index.html

ADDITIONAL READING
[1] JTAPI: http://java.sun.com/products/jtapi

BIOGRAPHIES
JO H N D E KE I J Z E R (john.dekeijzer@holland.sun.com) is the
Integrated Networks strategist and JAIN program manager
for Sun Microsystems. Working at Vicorp, Tandem, and
now Sun Microsystems, he was the chief architect for intel-
ligent network and enhanced networked service solutions
in Europe, the United States, and Asia/Pacific. At Sun, he is
responsible for implementing a unified strategy for open
systems for next-generation telephone and data networks.

DO U G L A S TA I T (douglas.tait@East.Sun.com) received his B.S.
in computer sciences from Temple University and his M.S.
in computer architecture and network design from the Uni-
versity of Pennsylvania. His computer experience includes
companies such as Unisys, Telesciences, General Electric,
and Martin Marietta. He spent several years developing
device drivers for SS7 protocol stacks and eventually man-
aged AIN projects at MCI and Sprint. One of the original
JAIN architects, he is driving the standardization of Java
interfaces in the communications industry and providing
solutions on Sun platforms.

RO B GO E D M A N joined the Dutch subsidiary of Sun in 1986
and transferred to the United States in 1990. He worked at
Sun’s FirstPerson on the blending of graphical user inter-
faces and digital video for TV based on the Oak language
(Oak later became Java). He was responsible in the Sun
Thomson Alliance for a team that investigated incorporat-
ing Java into set-top boxes. He subsequently led several
engineering teams, one of which delivered Sun’s imple-
mentation of a proxy cache appliance with high scalability
and failover. Since mid-1998 he has been a member of the
JAIN team, initially responsible for bringing the JAIN initia-
tive in line with Sun’s Java Community Process.

THE EJB COMPONENT MODEL
The best known *-Beans are JavaBeans and Enterprise JavaBeans (EJBs). In the

management domain MBeans have been around for several years. JavaBeans
was the first software component model added to the Java world, and its
primary focus was on reusable components, components that can be visually
manipulated and customized in (GUI) development environments to assem-
ble applications using introspection and a runtime event model to provide
notification and callbacks.

Enterprise JavaBeans are focused on the enterprise problem domain. It
delivers a server side software component model that supports the typical require-
ments of a database/transaction environment, such as access control, CORBA
interoperability, object transaction monitors, availability, and load-balancing.
Each EJB does not provide all these facilities by itself; it relies on a so-called
container for these services. This is exactly the strength of a *- Bean/contain-
er model: The developer of the *-Bean can focus on expressing the service
logic without having to worry about usually complicated system-level issues (e.g.,
related to high availability and load balancing).

Thus, one of the differences between JavaBeans and EJBs is that Java-
Beans can execute directly on the Java Virtual Machine. EJBs need a contain-
er to live in. In many cases it is attractive, though, to provide a container or
agent for JavaBeans as well (e.g., to handle lifecycle issues or translating Jav-
aBean events into some other event mechanism such as SNMP traps). This is
the case in JMX, and the currently available reference implementation of JMX
(see the box “What Is JMX”).

