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A series of N-per-O-acetyl-glucosyl arylthiosemicarbazide and thiosemicarbazone derivatives have been
synthesized and evaluated for their in vivo anti-dyslipidemic and in vitro antioxidant activities. Among
16 compounds tested, 3 compounds showed potent anti-dyslipidemic activity and 6 compounds showed
potent antioxidant and scavenger of oxygen free radicals activity.
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Atherosclerosis and its associated complications is now the ma- fore, it is essential to develop therapeutics for the treatment of

jor cause of myocardial morbidity and mortality worldwide. Ele-
vated level of plasma concentration of cholesterol, especially low
density lipoprotein (LDL) and triglyceride along with free radical
oxidative stress are recognized as leading cause in the develop-
ment of atherosclerosis and coronary heart disease.2 In general,
oxidative damage takes place in the Low density lipoprotein
(LDL) of plasma by the hydroxyl radicals (�OH) generated by the
metal ions present in the serum due to the alterations in their oxi-
dation states. It has been demonstrated that oxidative damaged
LDL are relatively more atherogenic than the native LDL.3 Cur-
rently, several drugs are being used in the treatment of dyslipide-
mia.4 The drugs can intervene by lowering cholesterol (LDL and
total cholesterol) or by lowering triglyceride levels in plasma.
Treatment of hyperlipidemia using statins has been used to lower
serum levels of cholesterol and triglyceride besides their known
side effects such as, myositis, arthralgias, gastrointestinal upset
and elevated liver function tests. Statins such as atorvastatin, lov-
astatin, fluvastatin, simvastatin and pravastin act as inhibitors of
HMG CoA reductase, an enzyme involved in the de novo synthesis
of cholesterol and upgradation of LDA receptors in livers. There-
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hyperlipidemia reducing their severe side effects.
The involvement of hydroxyl free radicals (�OH) has been found

to be a major causative factor for the peroxidative damage to lipo-
proteins present in the blood, which are responsible for the initia-
tion and progression of atherosclerosis in the hyperlipidemic
subject.5 Hyperlipidemia may also induce other abnormalities like
oxidation of free fatty acids, leading to the formation of ketone
bodies as well as masking liver and muscles resistance to insulin
which initiates the progress of diabetes in patients.6 Furthermore,
in hyperglycemic patients, several non-enzymatic glycosylation oc-
curs accompanied by glucose oxidation catalyzed by Cu2+ and Fe2+

resulting in the formation of O2
� and �OH radicals which further

accelerates the risk of cardiac diseases in dyslipidemic patients.7

Therefore, it is envisaged that, beside a cholesterol lowering
property, a hypolipidemic agent that incorporates antioxidant
activity will be able to protect endothelial and myocardial function
and could serve as a better anti-atherosclerotic agent. Recently, we
noted few papers in which thiosemicarbazides and related com-
pounds have been evaluated for the free radical scavenger activ-
ity.8 Prompted by the reports, we envisaged that glucosyl
thiosemicarbazides or thiosemicarbazone could be useful in con-
trolling metabolic disorder such as dyslipidemia and scavenging
of free radicals. In order improve the solubility of thiosemicarba-
zide derivates we prepared a series of per-O-acetylglucosyl thio-
semicarbazide and semicarbazone derivatives and evaluated
them for anti-dyslipidemic activity in vivo and antioxidant activity
in vitro.

mailto:akmisra69@rediffmail.com
http://www.sciencedirect.com/science/journal/0960894X
http://www.elsevier.com/locate/bmcl


OAcO

AcO

OAc

AcO Br

1

OAcO

AcO

OAc

AcO
NCS

2

KSCN, Bu4NBr
CH3CN, ref lux

ArNHNH2
CH2Cl2, r t

OAcO

AcO

OAc

AcO
NHNHArN

H

S

OAcO

AcO

OAc

AcO
NHNH2

N
H

S

OAcO

AcO

OAc

AcO
NHNN

H

S

R1

R2

NH2NH2
.H2O

CH2Cl2, r t

R1R2CO
2-Propanol

R1= H, methyl; R2 = Aryl

3

5a-e
4a-k

Scheme 1. Synthesis of glucosyl thiosemicarbazone (4a–k) and glucosyl aryl thiosemicarbazide derivatives (5a–e) from glucosyl isothiocyanate (2).

Table 2
synthesis of per-O-acetylated glucosyl arylthiosemicarbazide derivatives (5a–e)

Entry Compounds (5a–e)

OAcO
AcO

OAc

AcO
NHNHArN

H

S

Yield (%) mp (�C)

1 5a: Ar = 2,4-difluorophenyl 84 Oil
2 5b: Ar = 4-fluorophenyl 85 135–37
3 5c: Ar = 4-methoxyphenyl 82 Oil
4 5d: Ar = phenyl 90 Oil
5 5e: Ar = 2,4-dinitrophenyl 88 Oil
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A number of glucosyl thiosemicarbazide derivatives showed
significant in vivo anti-dyslipidemic and in vitro antioxidant activ-
ity, which could be used as leads for the development of effective
anti-atherosclerotic agents. We report herein, the synthesis and
anti-dyslipidemic and antioxidant activities of a series of glucosyl
thiosemicarbazide derivatives.

Preparation of a series of per-O-acetylated glucosyl thiosemi-
carbazone (4a–k) and per-O-acetylated glucosyl aryl thiosemicar-
bazide derivatives (5a–e) is presented in Scheme 1. Per-O-
acetylated b-D-glucosyl isothiocyanate derivative (2)9 was pre-
pared from commercially available acetobromo-D-glucose (1) using
KSCN and Bu4NBr under reflux for 4 h. A portion of compound 2
was treated with hydrazine monohydrate in CH2Cl2 at room tem-
perature to furnish compound 3 in 92% yield.10 Compound 3 was
allowed to react with a series of aldehydes and ketones using 5–
10 drops of acetic acid as catalyst in 2-propanol at 80 �C to give
compounds 4a–k in excellent yield.11 In another experiment, com-
pound 2 was allowed to react with a series of aryl hydrazines in
CH2Cl2 to furnish compounds 5a–e in excellent yield.12 The purity
of these compounds was checked by TLC and spectral analysis (Ta-
ble 1 and 2).

The anti-dyslipidemic activities of compounds 4a–k and 5a–e
were evaluated in a in vivo Triton model.13–15 Administration of
triton WR-1339 in rats induced marked hyperlipidemia as evi-
denced by increase in the plasma levels of total cholesterol (TC)
(3.53 F), phospholipids (PL) (3.06 F), triglyceride (Tg) (3.13 F). Tri-
ton induced rats caused inhibition of post heparin lipolytic activity
Table 1
Synthesis of per-O-acetylated glucosyl arylthiosemicarbazone derivatives (4a–k)

Entry Compounds (4a–k)

OAcO
AcO

OAc

AcO
NHNN

H

S
R1

R2

1 4a: R1 = methyl, R2 = 4-bromophenyl
2 4b: R1 = methyl, R2 = 3,4-dimethoxyphenyl
3 4c: R1 = methyl, R2 = 3-aminophenyl
4 4d: R1 = methyl, R2 = 3-nitrophenyl
5 4e: R1 = methyl, R2 = 2,5-dimethylphenyl
6 4f: R1 = H, R2 = 4-chlorophenyl
7 4g: R1 = H, R2 = 4-methoxyphenyl
8 4h: R1 = H, R2 = 5-nitrothiophen-2-yl
9 4i: R1 = H, R2 = 4-nitrophenyl
10 4j: R1 = H, R2 = 4-pyridyl
11 4k: R1 = H, R2 = 3-pyridyl
(PHLA)16 (�33%) as compared to control (Table 3). Treatment of
hyperlipidemic rats with compounds 4a–k and 5a–e at dose of
100 mg/Kg po reversed the plasma level of lipids with varying ex-
tents.17 The effect of compounds 4a, 4d and 5a showed potent lipid
lowering activity in plasma level of TC, PL and Tg by 22%, 24%, 20%;
26%, 25%, 19% and 26%, 20%, 19%, respectively, while other com-
pounds showed mild lipid lowering activity as compared to triton.
These data were compared with Gemfibrozil at a dose of 100 mg/
Kg, which showed a decrease in plasma levels of TC, PL and Tg
by 38%, 39% and 37%, respectively. In PHLA, the treatment with
compound partially reactivated these lipolytic activities in plasma
of hyperlipidemic rats. However, gemfibrozil causes the significant
reversal of these enzymes level.
Time (h) Yield (%) mp (�C)

4 92 186–88
5 90 200–201
4 94 178–80
4 92 184–86
5 88 Oil
1.5 97 198–200
4 94 182–83
3 85 178–80
2 96 200–03
2 90 102–103
2 95 134–36



Table 3
Lipid lowering and post heparin lipolytic activity of compounds 4a–k and 5a–e in triton treated hyperlipidemic rats

Entry Test compounds TCa PLa Tga Proteinb PHLAc

1 Control 90.65 ± 1.28 79.05 ± 4.96 86.31 ± 11.21 6.23 ± 0.43 16.66 ± 1.14
2 Triton only 320.41*** ± 11.27 (+3.53 F) 245.13*** ± 4.86 (+3.06 F) 270.83*** ± 14.43 (+3.13 F) 12.99*** ± 0.33 (+2.08 F) 11.16*** ± 1.37 (�33)
3 Triton + 4a 250.62*** ± 4.96 (�22) 180.55*** ± 8.33 (�26) 202.62*** ± 3.24 (�25) 9.60*** ± 0.42 (�26) 13.36** ± 2.22 (+ 16)
4 Triton + 4b 260.41** ± 22.17 (�19) 192.58*** ± 4.24 (�23) 211.79*** ± 5.22 (�22) 9.75*** ± 0.66 (�24) 14.88** ± 1.88 (+ 25)
5 Triton + 4c 270.00** ± 6.50 (�16) 208.46* ± 4.37 (�15) 243.50* ± 3.68 (�13) 10.33** ± 0.33 (�20) 12.26* ± 1.14 (+9)
6 Triton + 4d 245.83*** ± 10.97 (�23) 197.68** ± 3.49 (�19) 221.85** ± 8.81 (�18) 10.49** ± 0.33 (�19) 12.41* ± 1.16 (+10)
7 Triton + 4e 264.58** ± 13.01 (�18) 201.38** ± 6.94 (�18) 222.50** ± 9.01 (�17) 11.44* ± 0.53 (�12) 12.41* ± 0.90 (+ 10)
8 Triton + 4f 274.68* ± 17.06 (�14) 229.16NS ± 6.94 (�6) 243.87* ± 16.86 (�10) 10.02*** ± 0.35 (�22) 12.77* ± 0.88 (+12)
9 Triton + 4g 265.00** ± 17.21 (�17) 207.82* ± 7.93 (�15) 235.83* ± 5.20 (�10) 10.93* ± 0.68 (�15) 12.17NS ± 0.96 (+8)

10 Triton + 4h 276.35* ± 9.96 (�13) 205.60** ± 5.62 (�16) 230.58* ± 4.41 (�14) 10.40** ± 0.85 (�19) 13.0* ± 1.02 (+14)
11 Triton + 4i 260.24* ± 8.89 (�19) 209.88** ± 6.32 (�14) 240.88* ± 9.35 (�11) 10.14* ± 0.55 (�22) 12.67* ± 0.86 (+13)
12 Triton + 4j 286.44** ± 9.97 (�11) 217.76* ± 7.88 (�11) 248.32* ± 7.84 (�8) 11.52** ± 0.76 (�11) 12.10NS ± 3.46 (+8)
13 Triton + 4k 270.77** ± 11.24 (�15) 210.88* ± 9.96 (�14) 242.66* ± 7.44 (�10) 11.12* ± 0.45 (�14) 12.22NS ± 0.86 (+9)
14 Triton + 5a 242.70*** ± 13.01 (�24) 186.10*** ± 5.00 (�25) 202.08*** ± 9.54 (�25) 10.33** ± 1.04 (�20) 14.64*** ± 2.08 (+ 23)
15 Triton + 5b 280.20* ± 13.00 (�13) 209.71* ± 11.02 (�14) 245.00* ± 6.61 (�9) 10.61** ± 0.78 (�18) 12.99* ± 0.96 (+ 14)
16 Triton + 5c 265.10** ± 14.18 (�18) 215.83* ± 7.01 (�12) 243.75* ± 2.50 (�10) 10.62** ± 0.10 (�18) 12.08NS ± 2.90 (+7)
17 Triton + 5d 283.33* ± 18.30 (�11) 222.40* ± 2.77 (�10) 245.50* ± 18.87 (�9) 10.88** ± 0.50 (�16) 12.17* ± 1.72 (+ 8)
18 Triton + 5e 278.78** ± 16.22 (�13) 220.46* ± 6.78 (�10) 247.88* ± 17.27 (�8) 11.23* ± 0.92 (�13) 13.12* ± 2.10 (+17)
19 Triton + gemfibrozil 200.22*** ± 17.11 (�38) 152.11*** ± 11.11 (�39) 170.33*** ± 12.23 (�37) 8.60*** ± 0.27 (�33) 16.93*** ± 1.00 (+34)

TC, total cholesterol; PL, phospholipid; Tg, triglyceride; PHLA, post-heparin lipolytic activity.
Values are mean ± SD of six animals; *P < 0.01; **P < 0.05; ***P < 0.001; NS, not significant.
Triton treated group compared with control and Triton plus compound treated group.

a mg/dL.
b g/dL.
c nmol free fatty acid formed/h/mL plasma.

Table 4
Effect of compounds 4a–k and 5a–e on the generation of superoxide and hydroxyl radical and lipid peroxidation in microsomes

Test
compound

Conc. of compd. (lg/
mL)

Generation of superoxide ions (O2�)a Generation of hydroxyl radicals (�OH)b Microsomal lipid peroxidationb

Control 90.38 ± 7.12 75.52 ± 5.87 88.37 ± 9.14
4a 100 200 70.97 ± 4.92**(�21) 60.45 ± 3.84***(�33) 65.11 ± 4.92*(�14) 57.30 ± 5.0***(�24) 74.05 ± 5.33**(�16) 62.46 ± 2.84***(�29)

4b 100 200 82.51 ± 4.77NS(�9) 67.95 ± 5.3***(�24) 64.37 ± 3.88*(�15) 55.15 ± 4.87***(�27) 68.56 ± 7.39**(�22) 56.67 ± 5.0***(�35)

4c 100 200 69.51 ± 4.71**(�23) 55.97 ± 3.11***(�38) 60.27 ± 7.12**(�20) 46.70 ± 4.11***(�38) 71.78 ± 5.71**(�19) 57.15 ± 2.84***(�35)

4d 100 200 75.08 ± 5.31(�17) 60.21 ± 5.60(�33) 57.47 ± 4.32***(�24) 48.86 ± 5.00***(�35) 70.48 ± 5.30**(�20) 61.53 ± 5.0***(�30)

4e 100 200 72.11 ± 5.62**(�20) 63.22 ± 4.12***(�30) 62.77±4.66*(�16) 53.33 ± 3.87***(�29) 73.88±4.88**(�16) 65.32 ± 5.32***(�26)

4f 100 200 75.69 ± 5.39*(�16) 67.25 ± 4.42***(�25) 65.35 ± 5.22*(�13) 61.02 ± 4.33**(�19) 67.26 ± 3.72**(�23) 58.35 ± 2.88***(�33)

4g 100 200 67.00 ± 4.37***(�25) 60.20 ± 4.88***(�33) 60.75 ± 5.18**(�20) 49.73 ± 4.44***(�34) 64.96 ± 3.81***(�26) 57.32 ± 2.88***(�35)

4h 100 200 72.19 ± 5.33**(�20) 59.03 ± 4.44***(�34) 60.65 ± 5.21**(�20) 47.50 ± 3.11***(�37) 78.31 ± 5.37*(�11) 67.20 ± 3.00***(�23)

4i 100 200 78.30 ± 5.66***(�13) 69.78 ± 3.94*(�23) 62.90 ± 5.22**(�17) 58.23 ± 3.33**(�23) 72.45 ± 3.65**(�18) 60.67 ± 2.98**(�31)

4j 100 200 77.68 ± 5.26**(�14) 67.86 ± 4.22*(�25) 67.45 ± 5.66*(�11) 56.78 ± 3.90***(�23) 68.87 ± 5.50*(�22) 58.98 ± 3.84***(�33)

4k 100 200 75.78 ± 4.44*(�16) 64.88 ± 3.83**(�28) 65.88 ± 3.45***(�13) 55.43 ± 3.21*(�26) 72.86 ± 5.0**(�18) 65.77 ± 3.12***(�26)

5a 100 200 75.20 ± 5.88*(�16) 66.06 ± 4.44***(�27) 59.90 ± 5.01**(�20) 48.44 ± 3.77***(�35) 69.76 ± 3.00***(�24) 59.50 ± 2.77***(�31)

5b 100 200 76.18 ± 5.33*(�15) 63.90 ± 3.92***(�29) 58.59 ± 2.87**(�22) 48.41 ± 3.99***(�36) 68.69 ± 6.44**(�22) 57.60 ± 3.64***(�34)

5c 100 200 71.04 ± 6.0**(�21) 56.65 ± 3.70***(�37) 64.12 ± 5.70*(�15) 57.81 ± 4.23***(�23) 63.45 ± 5.11***(�28) 59.99 ± 3.77***(�32)

5d 100 200 72.43 ± 5.77**(�19) 61.29 ± 5.22***(�32) 56.24 ± 3.91***(�25) 43.87 ± 2.86***(�42) 67.51 ± 3.98***(�23) 53.88 ± 2.11***(�39)

5f 100 200 70.56 ± 5.68**(�22) 64.89 ± 4.0***(�28) 61.78 ± 4.12**(�18) 55.45 ± 2.67**(�26) 68.23 ± 3.56***(�23) 56.88 ± 3.56***(�36)
Standard

drug
200 20.50 ± 0.04***(�77) Alloprinol 41.30 ± 1.73***(�45) Mannitol 41.83 ± 0.03***(�53) a-Tocopherol

Each value is mean ± SD of six rats. ***P < 0.001; **<0.05; *<0.01; NS, not significant. Experimental data compared with control experiment.
a nmol formazone formed/min.
b nmol MDA formed/h/mg protein.
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In another experiment, antioxidant activities of compounds 4a–
k and 5a–e were evaluated by generating free radicals18 in vitro in
the absence and presence of these compounds. The scavenging po-
tential of compounds 4a–k and 5a–e at 100 and 200 lg/mL against
formation of O2

� are presented in Table 2. Compounds 4d, 4h and
5a caused significant decrease in plasma levels of lipid in triton
model of Hyperlipidemia. Triton WR-1339 acts as surfactant, sup-
presses the action of lipase and blocks the uptake of lipoproteins
from the circulation of extra hepatic tissues resulted an increase
in the levels of circulatory lipids.19 Compounds 4a, 4c, 4d, 4g, 4h
and 5c showed significant antioxidant and scavenger of oxygen
free radicals possibly through metal ion chelation and xanthine
oxidase inhibition in an in vitro model of non-enzymatic and enzy-
matic lipid peroxidation20 (see Table 4).

In conclusion a series of novel glucosyl aryl thiosemicarbazide
and glucosyl thiosemicarbazone derivatives have been synthesized
and shown to be effective anti-dyslipidemic and antioxidant
agents. Further optimization of the lead molecules are currently
in progress in our laboratory.
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reactants. Briefly, OH� were generated in a non-enzymatic system comprising
deoxy ribose (2.8 mM), FeSO4�7H2O (2 mM), sodium ascorbate (2.0 mM) and
H2O2 (2.8 mM) in 50 mM KH2PO4 buffer (pH 7.4) to a final volume of 2.5 mL.
The above reaction mixtures in the absence or presence of test compounds
(100 lg/mL and 200 lg/mL) were incubated at 37 �C for 90 min. The test
compounds were also studied for their inhibitory action against microsomal
lipid peroxidation in vitro by non-enzymatic inducer. Reference tubes and
reagents blanks were also run simultaneously. Malondialdehyde (MDA)
contents in both experimental and reference tubes were estimated
spectrophotometrically by thiobarbituric acid as mentioned above.
Alloprinol, Mannitol and a-tocopherol were used as standard drugs for
superoxide, hydroxylations and microsomal lipid peroxidation. All
experimental data were analyzed using Student’s t-test. Oxidized LDL was
compared with the test compounds treated oxidized LDL. The generation of
oxygen free radicals were compared in the presence and absence of test
compounds. The hyperlipidemic group was compared with control and
hyperlipidemic plus drug treated groups P < 0.05 was considered to be
significant.
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