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Research Highlights 

 Novel magnetic nanohydrogel supported Pd NPs are synthesized and characterized. 

 This material showed high efficiency for selective aerobic oxidation of alcohols. 

 Catalyst was magnetically recovered and recycled for several times   

 

Abstract:  

Nowadays it is still a great sustainable processes challenge to produce efficient, selective and 

easy magnetic recovery and recycling catalysts for oxidation of alcohols using air as the oxidant. 

In this work, a new magnetic nanohydrogel comprising [DABCO-allyl][Br] ionic liquid, allyl 

alcohol and N,N'-methylenebis(acrylamide) is used for stabilization of small and highly uniform 

palladium nanoparticles of 3-4 nm size MXCPILNHG@Pd. This material has been characterized 

by Fourier-transform infrared spectroscopy (FTIR), atomic adsorption spectroscopy (AAS), 

thermogravimetric analysis (TGA), transmission electron microscopy (TEM), scanning electron 

microscopy (SEM), energy dispersive spectroscopy (EDS), SEM-Map, energy-dispersive X-ray 

spectroscopy (EDX), X-ray photoelectron spectra (XPS), vibrating-sample magnetometer (VSM) 

and dynamic light scattering (DLS). According to optimization of cross-linking degree and ratio 

of DABCO-IL, MXCPILNHG-2@Pd is found as a highly selective catalyst in oxidations of 

primary alcohols to the corresponding aldehydes in toluene and to acids in water. Furthermore, 

secondary alcohols were reacted efficiently to the corresponding ketones in both toluene and 

water. Catalyst is magnetically recovered and recycled for several times in both toluene and 

water and the reused catalysts are characterized by TEM and XPS. 

Keywords: Magnetic, Nanohydrogel, Palladium, Oxidation, Alcohols 
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1- Introduction 

The oxidation of alcohols to carbonyl compounds is an essential transformation in synthetic 

organic chemistry because of obtained aldehydes and ketones are basic precursors for synthesis 

of many drugs, vitamins and fragrances[1–3]. In particular, the selective oxidation of primary 

alcohols to the corresponding aldehydes or acids has been widely approved as one of the most 

important transformations from current chemical industry [4–13]. In the past two decades, 

extensive attention has been paid to the use of transition metals as catalysts as a better alternative 

than the conventional waste-producing oxidation procedures which require stoichiometric 

amounts of toxic inorganic salts [4–28]. Among the different oxidizing agents, oxygen produces 

water as the only byproduct and therefore is highly desirable from economic and green chemistry 

standpoints. Different complexes and salts of transition metals, such as Fe [29], Ru [30], Co [31], 

Cu [32], and Au [33] have been employed for this useful reaction. However, in comparison with 

the other transition metals, palladium [34–40] is one of the best efficient catalyst for the aerobic 

oxidation of alcohols under homogeneous or heterogeneous reaction conditions [41–61]. Due to 

contaminants of toxic palladium with products and also high price of palladium catalysts, 

recently many heterogeneous palladium catalysts have been developed for oxidation reaction of 

alcohols [62–72]. However, in spite of the great achievements in this field, most of the 

heterogeneous catalysts are difficult to separate from the reaction mixture by standard laboratory 

methods such as filtration and centrifugation. One approach to solve this problem is the use of 

magnetic catalysts which can be easily separated from the reaction mixture by an external 

magnetic field and match with green and sustainable chemistry points of view. Along this line, 

iron oxide nanoparticles with large ratio of surface area to volume, superparamagnetic behavior 

and low toxicity are excellent supports for the stabilization of palladium nanoparticles in 
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different organic transformations [73–89]. However, to date, few magnetite nanoparticles 

supported palladium catalysts have been prepared and successfully used in the aerobic oxidation 

of alcohols.  

Nowadays chemists are interested in using ionic liquids as green solvents, catalysts and reagents. 

Despite outstanding physicochemical properties of ionic liquids (ILs) as alternative reaction 

media, their widespread utilization as solvent or catalyst are limited by the following 

drawbacks[90]: a) consume of large amounts of ILs is relatively costly and may cause 

toxicological problems, b) ILs play a minor role in the catalyzed reactions due to their higher 

viscosity and c) difficulties in product separation and catalyst recovery because of ILs 

homogeneity. To cope with these drawbacks, the concept of supported ionic liquids has been 

developed to associate both advantages of ILs and heterogeneous support materials. Several 

efforts have been made to immobilize ILs onto the support materials such as mesoporous silica 

[91–93], silica gel [94–96], polymers [97–99] and magnetic nanoparticles [100–102]. 

Heterogenization of ILs onto the material used as support has some problems such as tedious and 

difficult procedures of ILs grafting onto the surface of the support and low thermal stability of 

grafted ILs. Also, the normal grafting of ILs onto the solid materials is offering only one 

available layer on solid surface for immobilization which in turn leads to the low loading amount 

of grafted ILs. Hence, the low loading of ILs causes to use a large amount of solid support 

materials which in turn results in consuming a large amount of organic solvents in catalysis 

reactions and difficulty in separation/recovery of the used catalysts. Consequently, the available 

multi-layer onto the solid material surface for IL immobilization was proposed as a good 

technique to enhance IL loading amount [103–107]. But to avoid several boring steps [108] 
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looking for a simple and facile way for applying multi-layer on the solid support materials seems 

required.  

In the present work, we report the synthesis of a novel magnetically copoly(ionic liquid) network 

catalyst in the nanoscale sizes, so-called magnetic x-linked PIL nanohydrogel (MXCPILNHG). 

These particles are prepared through the crosslinking copolymerization of a monomer bearing IL 

via a miniemulsion polymerization method followed by the loading of palladium nanoparticles 

(Pd NPs) to the IL groups in the network. The efficiency of this catalyst has been applied to the 

selective aerobic oxidation of alcohols. 

2. Experimental 

2.1. General remarks.  

All materials were purchased from Sigma-Aldrich, Acros and Merck Millipore. Reactions were 

monitored by gas chromatography Varian CP-3800. 1H NMR and 13C NMR spectra were 

recorded at 400 MHz and 100 MHz, respectively on a Bruker Avance HD apparatus in CDCl3. 

Chemical shifts are given on the δ-scale in ppm, and residual solvent peaks were used as internal 

standards. X-ray diffraction (XRD) patterns were recorded using Philips X’Pert Pro instrument. 

The TEM and SEM mapping images were captured with EOL JEM-2010 and Hitachi S3000N. 

(XPS) analyses were performed using a K-Alpha spectrometer. The weight loss of samples was 

measured using a thermogravimetry (NETZSCH STA 409) under an N2 flow rate of 20 ml.min-

1 with a heating rate of 10 °C·min-1 from 30 to 800 °C. The diluted aqueous suspension of 

MXCPILNHG-2 particles was set on a clean glass slide and then vacuum-coated with gold. 

Digital images of the samples were acquired with Hitachi S4160 FE-SEM operating at 20 kV. 

FT-IR study of samples were performed using FT-IR spectrophotometer (Bruker vector 22 

spectrophotometer, Germany) by preparing their KBr pellets from 400 to 4000 cm-1. Magnetic 
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measurements were performed using vibration sample magnetometry (VSM), (MDK Co. 

Kashan, Iran) analysis. 

2.2. Preparation of Fe3O4 NPs.  

FeCl3·6 H2O (11.0 g) and FeCl2·4H2O (4.0 g) were dissolved in deionized water (250 mL) and 

the mixture was stirred using a mechanical stirrer under an argon atmosphere. To the resulting 

mixture, aqueous ammonia (25 %, 40 mL) was added slowly over 20 min, and the mixture was 

stirred at 80 °C for 4 h. A black precipitate of Fe3O4 was collected by using an external magnet 

and washed with deionized water (3 × 20 mL) and ethanol (3 × 20 mL) and finally dried under 

vacuum. 

2.3. Preparation of Fe3O4@SiO2. 

To the 30 min sonicated Fe3O4 NPs (1 g) in ethanol (200 mL), tetraethyl orthosilicate (2 mL) and 

aqueous ammonia (25 %, 6 mL) were added and the resulting mixture was stirred for 24 h at 

room temperature. Fe3O4@SiO2 NPs were separated by an external magnet and washed with 

EtOH (3×10 mL) dried in oven at 60 °C. 

2.4. Synthesis of [DABCO-Allyl] [Br].  

To a flask containing a solution of DABCO (24 mmol, 2.69 g) in ethyl acetate (50 mL), allyl 

bromide (20 mmol, 1.73 mL) was added and the resulting mixture was stirred for 24 h at room 

temperature. Then, the obtained solid was crystalized in diethyl ether and dried in oven at 50 °C. 

NMRs characterization verified the successful synthesis of [DABCO-Allyl][Br] (Figures S1 and 

S2). 1H NMR: δ 5.97-5.87 (m, 1H), 5.67-5.58 (m, 2H), 3.84 (d, 2H, J=8), 3.35 (t, 6H), 3.12 (t, 

6H). 13C NMR: δ 129.07, 123.60, 66.41, 52.00, 44.42. 
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2.5. Preparation of Fe3O4@SiO2@vinyl. 

 Fe3O4@SiO2 (1 g) was sonicated in dry toluene (30 mL) for 30 min, and then 

dichloromethylvinylsilane (4 mmol, 0.52 mL) was added under inert conditions. The resulting 

mixture was stirred for 24 h at 80 °C under argon protection. Then, the reaction mixture was 

subjected to magnetic separation and the solid was separated giving Fe3O4@SiO2@vinyl which 

was washed with EtOH (3×10 mL) and dried in an oven at 60 °C. 

2.6. Preparation of MXCPILNHG-2. 

These nanohydrogels were prepared via an inverse miniemulsion polymerization method. 

Fe3O4@SiO2@vinyl (0.43 g), [DABCO-Allyl][Br] (2.15 mmol, 0.5 g), allyl alcohol (50 mmol, 

3.4 mL) and N,N’-methylenebis(acrylamide) as crosslinker (4.34 mmol, 0.67 g) were dispersed 

in water (4.8 mL) with the aid of mechanical stirrer to form the water phase. Benzoyl peroxide as 

radical initiator (0.11 g) and Span80 as surfactant (1.19 g) were dissolved in cyclohexane (38.5 

mL) to form the oil phase. Then, the water phase was added to the oil phase under vigorous 

mechanical stirring at room temperature for 1 h. The resulted inverse emulsion was 

miniemulsified using sonication (at amplitude of 50% in pulse mode) for 10 min in an ice-water 

bath to avoid unwanted polymerization. The obtained stable miniemulsion was quickly 

transferred to a three-necked round-bottomed flask equipped with a condenser, argon inlet and 

mechanical stirrer in the oil bath and was purged with argon. Finally, polymerization occurred at 

70 °C under constant stirring of 500 rpm. After 24 h, the mixture was cooled by leaving it at 

room temperature for 1 h. The resulting nanoparticles were separated using an external magnet 

and washed several times by cyclohexane and water to remove impurities and unreacted 

monomers. The particles were dried in the oven at 50 °C for 12 h and then in a vacuum oven at 

50 °C for another 12 h. 

ACCEPTED M
ANUSCRIP

T



 8 

2.7. Synthesis of MXCPILNHG-2 supported palladium NPs catalyst.  

MXCPILNHG-2 (500 mg) was sonicated in water (10 mL) for 15 min. Then, a solution of 

Na2PdCl4 (0.047 mmol, 14 mg) in H2O (5 mL) was added slowly and the mixture was stirred for 

1 h at room temperature. Then, a solution of NaBH4 (0.8 mmol, 30 mg in 5 mL H2O) was added 

during the 15 min and mixture was stirred for 24 h at room temperature under argon atmosphere. 

The resulting solid was separated magnetically, washed with water (3 × 20 mL) and ethanol (3 × 

20 mL), and dried in an oven at 60 oC. The loading of Pd on the obtained material was 

determined by atomic adsorption spectroscopy analysis to be 0.1 mmol·g-1. 

2.8. General procedure for the oxidation of alcohol to aldehyde and acid (or ketone): 

In a 5 mL glass flask, catalyst (10 mg, containing 0.2 mol% Pd), alcohol (0.5 mmol), K2CO3 

(104 mg, 0.75 mmol) and H2O or toluene (2 mL) were added and reaction mixture was stirred 

continuously at 90 oC for the desired time under O2 atmosphere (from a balloon). Then, in the 

case of water as solvent, products were extracted with ethyl acetate and the catalyst was 

recovered by an external magnet. Yields of desired products were determined by gas 

chromatography. 

2.9. Contact angle measurement for series of MXCPILNHG@Pd: 

Compact pellets of all the prepared nanoparticles (both crosslink and DABCO-IL series) were 

prepared using stainless steel die-set and hydraulic press. Fine powder of nanoparticles was 

pressed for 5 minutes to form smooth pellets, 7 mm in diameter. The contact angle was 

determined with deionized water, using camera (Canon 70D) and ImageJ2x software. Three 

readings were taken in order to obtain an average over the heterogeneity of the surfaces. The 

pellets were placed in a vacuum oven at 50 °C for 12 h before measurements. 
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3. Results and discussion 

3.1. Materials and characterization 

The preparation steps for the magnetic hydrogel supported palladium NPs are presented in 

Scheme 1. Fe3O4 NPs were prepared from the reaction of FeCl3·6H2O and FeCl2·4H2O using a 

simple co-perception method. Core/shell Fe3O4@SiO2 NPs were obtained from the reaction of 

Fe3O4 NPs and tetraethyl orthosilicate via a sol–gel process. TEM images showed thickness of 

SiO2 shell to be around 4 nm (Figure S3), and also the results of porosimetry revealed the BET 

surface area of 37 m2·g-1 for Fe3O4@SiO2. Carbon-carbon double bound was introduced on 

core/shell surface via the reaction of dichloro(methyl)vinylsilane with Fe3O4@SiO2 NPs. Then, 

Fe3O4@SiO2@vinyl was allowed to undergo polymerization with the already prepared 

[DABCO-allyl] [Br] salt, allyl alcohol and N,N'-methylenebis(acrylamide) as crosslinking agent 

in a mixture of cyclohexane/water and Span 80 (sorbitan oleate) as nonionic surfactant in the 

presence of benzoyl peroxide as an initiator. Final nanomagnetic hydrogel supported Pd NPs 

were obtained via the reaction of polymer modified Fe3O4 NPs with Na2PdCl4 and NaBH4 under 

argon. The loading of Pd on the obtained solid was determined by atomic absorption 

spectroscopy analysis to be 0.1 mmol/g. The obtained magnetic composite is referred as 

MXCPILNHG@Pd NPs through the text of this article.  

The surfaces of prepared magnetic compounds were investigated by FT-IR spectroscopy (Figure 

1). In the case of the FT-IR spectrum of Fe3O4@SiO2 peaks at 1097 and 1637 cm-1 related to the 

Si–O–Fe and bending vibration of the adsorbed water on the surface, respectively, were observed 

(Figure 1A). Besides, a new peak was observed at 1642 cm-1 related to C=C stretching for 

Fe3O4@SiO2@vinyl (Figure 1B). The characteristic peaks for the MXCPILNHG-2 occurs at 

3300-3600 cm-1 for the O-H stretching of allyl alcohol, 2928 and 2855 for the C-H stretching of 
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methylene and methine groups in the backbone of polymer. In addition, peaks at 3064, 1453, 

1655 and 1532 cm-1 were attributed the N-H, C-N, free C=O and H-bonded C=O stretching of 

amide, respectively (Figure 1A). 

Thermogravimetric analysis (TGA) was performed to study of the thermal properties of 

Fe3O4@SiO2@vinyl and MXCPILNHG-2 (Figure 2). The TGA thermogram for 

Fe3O4@SiO2@vinyl showed two main weight losses between 25-800 °C (Figure 1). The first 

weight loss was attributed to water and or physically adsorbed solvents and the second one is 

related to the successful grafting of vinyl groups on the surface of the core-shell magnetic 

nanoparticles (Figure 2A, S13). While, the TGA thermogram of the final nanohydrogel displayed 

three-step weight-loss profiles which of that the first one was attributed to the water and or 

physically adsorbed solvents (Figure 2B, S14). Dequaternization of the ammonium generally 

happens in the thermal degradation of ammonium containing polymers and the mechanism of 

this phenomenon occurs through two main suggested pathways; nucleophilic substitution and 

Hofmann elimination [109–111]. Therefore, one can conclude that the second weight loss is 

related to the dequaternization of DABCO mainly followed a reverse nucleophilic substitution 

mechanism (Scheme S1). These results are consistent with the finding of Zhang et al. where they 

studied the thermal degradation of copolymers based on N-4-vinylbenzyl-N'-alkyl DABCO BrCl 

(VBDCxBrCl) and n-butyl acrylate. They reported the 5 wt.% loss temperature values (Td) of 

DABCO salt-containing copolymers ranged from 190 to 290 °C when ionic monomer varied 

from 42 to 1 mol % [111]. Whereas, the measured Td value for MXCPILNHG-2 with 3.95 mol % 

of DABCO-IL monomer was around 245 °C, indicating the degradation mechanism for our case 

follows through a nucleophilic substitution mechanism, but it needs to be studied in more details. 

And finally, the third weight-loss step corresponded to the polymer backbone degradation, 
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mainly poly(allylalcohol) with initiation and maximum degradation temperatures of around 

345.7 and 474 .8 °C, respectively [112]. The residue of around 31 wt. % is also attributed to the 

content of core-shell magnetic nanoparticles.  

Magnetization curves for Fe3O4 NPs, Fe3O4NPs@SiO2@vinyl, and magnetic hydrogel supported 

palladium were also studied (Figure 3). Results indicate a major decrease in the magnetization 

value of Fe3O4NPs@SiO2@vinyl with respect to Fe3O4 NPs confirming the successful 

introduction of silyl and double bond shell. Also, a decrease in the magnetization value of 

magnetic hydrogel supported palladium is due to the effective polymerization around 

Fe3O4NPs@SiO2@vinyl nanoparticles. However, in all samples Zero coercivity and remanence 

on the magnetization loop was observed without the presence of hysteresis loop, suggesting the 

superparamagnetic nature of the samples (Figure S15). 

The field emission scanning electron microscopy (FE-SEM) micrographs revealed a paste-like 

morphology for MXCPILNHG-2 particles in the dried form (Figure 4). The size distribution of 

particle was obtained by manually measuring of at least 400 particles using JMicrovision 1.2.7 

software. Then, the data was fitted by Gaussian function and the average particles size was 

calculated by the following equation: 𝐷̅ = ∑𝑑𝑖𝑛𝑖 ∑𝑛𝑖⁄ , where 𝑛𝑖 is the number of particles with 

diameter 𝑑𝑖. The average size of around 182 nm was found for these nanoparticles. While, 

dynamic light scattering (DLS) analysis revealed a hydrodynamic diameter of around 203nm for 

these particles (Figure S4). This difference can be attributed to the swelling capability of the 

particles in aqueous media, i.e. hydrogelic properties. 
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Transmission electron microscopy (TEM) images of final nanohydrogels showed the presence of 

polymer sheets around magnetic nanoparticles. TEM images also indicate incorporation of 

uniformly dispersed Pd NPs with the calculated average size of 3.5 nm (Figure 5). Also, 

scanning tunneling microscopy (STM) images of MXCPILNHG-2@Pd showed the presence of 

the Pd NPs (bright dots) on the surface of the final hydrogel structure (Figure S5). As well, BET 

isotherm of MXCPILNHG-2 before and after loading of Pd NPs showed no obvious difference 

in curves, indicating no obvious changes in structure (Figure S6-A). The degree of hysteresis 

loop, the gap between adsorption curve and desorption curve, in the isotherm of final hydrogel 

particle increased with increasing of Pd content (from 0.05 to 0.3 mmol of Pd, see Table S5 and 

Figure S6-B) and this is mainly due to capillary condensation effect. In other word the observed 

pressure difference between gas adsorption and desorption is probably because of locating of Pd 

nanoparticles inside pores in final hydrogel structure (bottle-neck structure) and this effect is 

intensified with increasing of Pd nanoparticle (Figure S6-B). Moreover, BET measurements 

showed that the surface area of MXCPILNHG-2 (25 m2.g-1) was increased by addition of Pd NPs 

(28 m2.g-1), maybe due to the added surface area by Pd NPs (Table S5). Consequently, one 

concluded that Pd NPs were located both inside and surface of the final hydrogel structure.    

X-ray diffraction (XRD) analysis of prepared magnetic hydrogel showed related Bragg’s 

reflections to the Fe3O4 NPs in 2ϴ = 30.2, 35.5, 43.4, 53.5, 57.2, and 62.8° correspond to the 

(210), (311), (400), (422), (511), and (440) planes, respectively. In addition, these results showed 

Bragg’s reflections related to palladium in 2ϴ = 40.1, 46.8, and 68.2° and also related to silica 

shells in 2ϴ = 22° (Figure 6) [113]. 

The X-ray photoelectron spectrum (XPS) of MXCPILNHG-2@Pd was also studied. XPS study 

of Fe 2p region shows two main binding energy peaks area (deconvoluted by six peaks) related 
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to 2p3/2 and Fe 2p1/2. Peaks centered at 712.7, 726.2 eV are related to Fe(III) oxidation state 

Furthermore the satellites at 719.1 eV and 732.9 eV are related to Fe3+ in the Fe2O3 phase, 

suggesting that the surface of Fe3O4 was partially oxidized to γ-Fe2O3. Also peaks at 710.5 and 

724.3 eV are good agreement with Fe(II) and in the Fe3O4 structure [114,115] (Figure 7A). The 

XPS spectra in C 1s region showed three peaks centered at 284.7 and 286.9 and 288.5 eV, which 

are related to C-C or C=C, C-N or C-O and C=O forms of carbon, respectively [116,117] (Figure 

7B). XPS study in Pd 3d region showed the presence of two intensive doublets at 335.5 and 

340.7 eV related to Pd(0) and peaks at 337 and 342.5 eV related to Pd(II) species (Figure 7C). 

Results indicated that 74.9 % of palladium is in metallic Pd(0) form [118]. Also, the N1s core 

level spectrum shows a main peak at 399.6 eV, which is attributable to the neutral amine and a 

minor peak at 402 eV, which is related to positively charged quaternary nitrogen species [119] 

(Figure 7D).  

Furthermore, energy dispersive spectroscopy (EDS) confirmed presence of different elements 

such as Pd, N, Si, Fe, and C were in the structure of magnetic hydrogel supported Pd NPs (Figure 

8). On the other hand, SEM-Map images showed the presence of C, N and Pd in highly 

uniformly in magnetic hydrogel structure (Figures S7 and S8).  

3.2.Catalytic performance 

Catalytic activity of final Pd loaded magnetic nanohydrogels MXCPILNHG-2@Pd was 

examined in the aerobic oxidation of alcohols. Initially, selective aerobic oxidation of benzyl 

alcohol in toluene or H2O solvents and K2CO3 as the base at 90 °C was selected as benchmark 

reaction. In order to find nanoparticles with high catalyst efficiency as well as high selectivity 

ability, two series of nanoparticles were synthesized. The first series, MXCPILNHG-crosslink, 

which of that the mole percent of the methylene bisacrylamide (MBA, as crosslinker) to the total 
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content of two monomers was increased from 4.5 to 8.3 and 15.0 %, named MXCPILNHG-1, 

MXCPILNHG-2 and MXCPILNHG-3, respectively (Table S1). In this series, it was curious to 

find the effect of hydrogel pore size, induced by crosslinking degree, on the catalyst activity and 

selectivity of nanoparticles and in the second series (i.e., MXCPILNHG-DABCO-IL), the mole 

percent of DABCO-IL to the total content of monomers was decreased from 12.4 to 4.1 and 2.2 

% (named MXCPILNHG-4, MXCPILNHG-2, MXCPILNHG-5) in order to answering the 

following question; how the hydrophobicity of nanoparticles affects to catalyst efficiency and 

selectivity (Table S2).  

In the MXCPILNHG-crosslink series, increasing of the crosslinking degree leads to a decrease in 

pore size of the obtained nanohydrogel. Therefore, it is expected that the confined pores in the 

higher crosslinking degree can limit the reagent transportation inside the nanohydrogel. 

 Nevertheless, the yields of the obtained products (benzaldehyde and benzoic acid) in the related 

solvents were decreased for MXCPILNHG-3 due to the mentioned compact structure of 

nanoparticle (Table S3). Also, the results revealed that the acid product yield was not actually 

varied with increasing of crosslinking degree for MXCPILNHG-1 and MXCPILNHG-2 (Table 

S3). But for these two catalysts, the aldehyde product yield was increased from 5 to 98 % in 

toluene as solvent. It seems that the benzyl alcohol has more tendency toward inside of particles 

in MXCPILNHG-2 than in MXCPILNHG-1 being oxidized to aldehyde in toluene as solvent. 

This tendency may be related to the hydrophobization effect of the crosslinking process, because 

for every linkage, one methylene group and two amide groups (with low capability of H-bond 

forming due to the strong resonance) are replaced by two hydroxyl groups. To confirm this 

claim, we checked their wettability by measuring contact angle of the particles. The results 
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showed that contact angle was increased with crosslinking degree; compare 53, 63 and 74° for 

MXCPILNHG-1, MXCPILNHG-2 and MXCPILNHG-3, respectively (Figure S9). 

In the next step, we were looking for the optimized content of DABCO-IL in MXCPILNHG-

DABCO-IL series. In the lowest content of DABCO-IL, i.e. MXCPILNHG-5, the yield of both 

products was decreased (Table S4).  

This reduction in yielding can be related to the low loading of Pd NPs induced by the low 

content of DABCO-IL in the nanoparticle. And, the comparison between MXCPILNHG-4 and 

MXCPILNHG-2 revealed that the acid product yield was not actually changed, but the aldehyde 

product yield was decreased for the sample with the higher content of DABCO-IL, i.e. 

MXCPILNHG-4 (Table S4). The reason may lie in the fact of hydrophilization effect of 

DABCO-IL monomer containing two hydration sites, namely quarter ammonium. Accordingly, 

the tendency of nanoparticles for dispersion in toluene for MXCPILNHG-4 is lower than 

MXCPILNHG-2 and the catalyst efficiency for aldehyde product was declined from 98 to 10% 

(Table S4). For further proof, contact angle of particles was measured and its value was 

increased with lowering of the DABCO-IL content; compare 54, 63 and 80° for MXCPILNHG-

4, MXCPILNHG-2 and MXCPILNHG-5 (Figure S9). 

Based on the observed data from Tables S3 and S4, it seems that the MXCPILNHG-2 in both 

series has the best catalyst efficiency and selectivity and therefore, MXCPILNHG-2 was chosen 

as optimized formulation for further studies. To insure that toluene and water are best solvents 

for selective oxidation of benzyl alcohol to benzaldehyde and benzoic acid, respectively, the 

effect of other solvents such as 1,4-dioxane, CH3CN, and DMA in the presence of 0.2 mol% of 

MXCPILNHG-2@Pd were studied (Table 1, entries 1-3). Results indicated formation of low 

yields for the desired oxidation products. Using other bases such as NaOAc, t-BuOK and base-
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free reaction conditions gave low conversion in both toluene and H2O (Table 1, entries 4-9). In 

addition, lowering the Pd loading, reaction times and temperature afforded low reaction 

conversion in both toluene and H2O as solvents (Table 1, entries 10-15). It should be noted that 

using Fe3O4@SiO2@Pd as catalyst reactions gave very low yields and starting material was 

intact (Table 1, entries 16-17). 

 

Having the optimized reaction conditions in hand, aerobic oxidation of different primary 

alcohols was studied. Reactions of benzylic alcohols having electron-donating and electron-

withdrawing groups as well as 1-naphthylmethanol in H2O and toluene proceed efficiently and 

selectively acid and aldehydes were obtained (Table 2, entries 1-10). Reaction of 2-

furanylmethanol as the heterocyclic primary alcohol was also studied. It is worth noting that 2-

furanylmethanol is unstable alcohol in water and produce undesirable polymeric products. 

However, result of reaction in toluene showed highly selective formation of furfural in 96 % 

yield (Table 2, entry 11). Also, oxidation of 1-octanol as an aliphatic alcohol proceeded very 

well and products were obtained selectively in excellent yields (Table 2, entry 12). Reaction of 

cinnamyl alcohol as allylic alcohol in water gave moderate conversion with excellent selectivity 

to cinnamaldehyde while its reaction in toluene gave excellent conversion and selectivity to 

cinnamic acid (Table 2, entry 13). 

We have also studied the oxidation of secondary alcohol under the optimized reaction conditions. 

Results of our study indicated that 1-phenylethanol, 1-phenylpropan-1-ol, 1,2,3,4-

tetrahydronaphthalen-1-ol, benzhydrol, and 4-tert-butylcyclohexanol were performed very well 

in both toluene and water and the corresponding ketones were obtained in high to excellent 

yields (Table 3, entries 1-5). Reaction of cyclooctanol in water proceed well and cyclooctanone 
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was obtained in 88 % yield. However, the reaction in toluene was sluggish and low yield for 

corresponding ketone was obtained (Table 3, entry 6). 

 

Catalytic activity and TOF of MXCPILNHG-2@Pd is compared with some of the reported 

catalysts in oxidation of benzyl alcohol as a common substrate (Table 4). In spite of high activity 

of some reported catalysts, results indicated overall activity of MXCPILNHG-2. 

3.3. Recycling of the catalyst 

Finally, recycling of the catalyst was studied for the oxidation reaction of benzyl alcohol under 

the optimized reaction conditions. For this purpose, after completion of reaction, catalyst was 

easily separated by external magnet and after washing with ethyl acetate was reused in another 

batch (Figure S15). Results indicated that the catalyst was recyclable up to 5 consecutive runs 

with small decrease in activity (Figure 9). However, yield was dropped to 68 and 74 % in ran 6 

and to 35 and 43 % in run 7 in toluene and water respectively. Measurement of Pd content in 

each cycle indicated that dropping of yields are match with ratio of Pd leaching during the 

recycling (Table S6).  

 

3.4.1. Characterization of reused catalyst 

TEM images of reused catalysts in both toluene (Figure 10A-C) and water (Figure 10D-F) in 

different magnification indicated preservation of the catalyst structure and the presence of 

partially aggregate Pd  NPs in bigger size (𝐷̅ = 7.4 nm for toluene and 𝐷̅ = 9.3 nm for H2O) with 

respect to the Pd NPs in the fresh catalyst (𝐷̅ = 3.5 nm). 
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XPS study of the reused catalyst after 5 runs in Pd 3d region showed different content of Pd (II) 

and Pd(0) species in water and toluene (Figure 11). While ratio of Pd(0)/Pd(II) was very similar 

to fresh catalyst, results for reused catalyst in water showed noticeable increasing of Pd(II) form 

with respect to the fresh catalyst. This may due to the good diffusion of oxygen in H2O with 

respect to toluene.   

Conclusion 

The new catalyst based on the palladium loaded magnetic nanohydrogel bearing ionic liquid sites 

(MXCPILNHG@Pd) can be prepared and characterized by different techniques. By optimization 

of crosslinking degree and DABCO-IL content, MXCPILNHG-2@Pd with 8.3 % mol 

crosslinker and 4.1 % mol DABCO-IL showed good activity and selectivity toward oxidation of 

primary alcohols to aldehydes and acids in toluene and water respectively. In the case of 

secondary alcohols, the catalyst showed also high efficiency in both water and toluene. This 

catalyst can be easily recovered by separation with a magnet and reused for at least five cycles 

without detriment to its catalytic activity. Structure of reused catalyst in both toluene and water 

was studied by various techniques such as TEM and XPS. 
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Figure 1. FT-IR spectrum of Fe3O4@SiO2, Fe3O4@SiO2@vinyl and MXCPILNHG-2 (A) and 

the extended FT-IR spectrum of Fe3O4@SiO2 compared with Fe3O4@SiO2@vinyl (B).  
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Figure 2. TGA and DTG thermograms of Fe3O4@SiO2@vinyl (A) and MXCPILNHG-2 (B). 
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Figure 3. Magnetization curves for Fe3O4 NPs, Fe3O4NPs@SiO2@vinyl, MXCPILNHG-2@Pd 

and reused MXCPILNHG-2@Pd. 
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Figure 4. FE-SEM micrographs of MXCPILNHG-2 particles with paste-like morphology (A-C) 

and relatively narrow size distribution (D). Solid curve is Gaussian fit to the data.  
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Figure 5. TEM images of MXCPILNHG-2@Pd in different magnification. The solid curve is 

Gaussian fit to the data. 
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Figure 6. XRD pattern of MXCPILNHG-2@Pd. 
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Figure 7. XPS spectrum of MXCPILNHG-2@Pd in A) Fe 2p, B) C 1s, C) Pd3d and D) N 1s 

regions. 
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Figure 8. EDX spectrum of MXCPILNHG-2@Pd. 
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Figure 9. Recycling of the catalyst (MXCPILNHG-2@Pd) for the oxidation reaction of benzyl 

alcohol in toluene and H2O. 
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Figure 10. TEM images of reused catalyst (MXCPILNHG-2@Pd) after 5 runs in toluene (A-C) 

and H2O (D-F). 
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Figure 11. XPS spectrum of reused MXCPILNHG-2@Pd in Pd 3dregion for the oxidation 

reaction of benzyl alcohol; A) Toluene and B) H2O. 
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Scheme 1. Steps for preparation of MXCPILNHG@Pd NPs.  
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Table 1. Optimization of reaction condition for the oxidation of benzyl alcohol in the presence of 

MXCPILNHG-2@Pda 

  

Entry Solvent Base 

Conv. 

(%)b 

A (%) B (%) 

1 1,4-Dioxane K2CO3 5 5 ---- 

2 CH3CN K2CO3 52 52 ---- 

3 DMA K2CO3 11 11 ---- 

4 H2O Na(OAc)2 15 10 5 

5 H2O t-BuOK 35 25 10 

6 H2O Free Base 15 4 11 

7 Toluene Na(OAc)2 43 43 ---- 

8 Toluene t-BuOK 32 29 3 

9 Toluene Free Base 37 37 ---- 

10 H2O K2CO3 28 10 18c 

11 Toluene K2CO3 38 38c ---- 

12 H2O K2CO3 50 5 35d 
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13 Toluene K2CO3 88 88d ---- 

14 Toluene K2CO3 67 67e ---- 

15 H2O K2CO3 93 6 87e 

16 Toluene K2CO3 2 2f - 

17 H2O K2CO3 4 2 2f 

a Reaction conditions: benzyl alcohol (0.5 mmol), base (0.75 mmol), solvent (2 mL), catalyst (10 

mg containing 0.2 mol % Pd). 

b GC yields. 

c Reactions using 0.1 mol % catalyst. 

d Reactions performed during 12 h. 

e Reactions performed at 75 °C. 

f. Reactions using Fe3O4@SiO2@Pd (average yield of the two reactions). 
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Table 2: Aerobic oxidation of structurally different primary alcohols in the presence of 

MXCPILNHG-2@Pda 

 

Entry Alcohol Solvent Conv. (%) 

Aldehyde 

(%) 

Acid 

(%) 
TON [TOF (h-1)] 

1 
 

H2O >99 1 99 250 [10.4] 

Toluene >99 98 2 250 [10.4] 

2 

 

H2O 96 5 91 240 [10] 

Toluene 93 93 ----- 232 [9.6] 

3 

 

H2O 99 19 80 247 [10.3] 

Toluene 80 80 ----- 200 [8.3] 

4 

 

H2O >99 12 88 250 [10.4] 

Toluene 96 96 ----- 240 [10] 

5 

 

H2O 62 10 52 155 [6.4] 

Toluene 88 88 ----- 220 [9.1] 

6 

 

H2O >99 ----- >99 250 [10.4] 

Toluene 76 76 ----- 190 [7.9] 
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7 

 

H2O 99 83 16 247 [10.3] 

Toluene 90 90 ----- 225 [9.3] 

8 

 

H2O >99 10 90 250 [10.4] 

Toluene 93 93 ----- 232 [9.6] 

9 
 

H2O 99 3 96 247 [10.3] 

Toluene >99 >99 ----- 250 [10.4] 

10 

 

H2O 75 75 ----- 187 [7.8] 

Toluene >99 >99 ----- 250 [10.4] 

11 
 

H2O ----- ----- ----- ----- 

Toluene 96 96 ----- 240 [10] 

12 
OH

 

H2O >99 ----- >99 250 [10.4] 

Toluene 94 94 ----- 235 [9.7] 

13 

 

H2O 62 60 2 155 [6.4] 

Toluene 91 91 ----- 227 [9.4] 

a Reaction conditions: alcohol (0.5 mmol), K2CO3 (0.75 mmol), solvent (2 mL), catalyst (10 mg 

containing 0.2 mol % Pd), and O2 atmosphere. 
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Table 3: Aerobic oxidation of secondary alcohols in the presence of MXCPILNHG-2@Pda 

 

Entry Alcohol Solvent Conv. (%) Yield (%) TON [TOF (h-1)] 

1 

 

H2O 90 90 225 [9.3] 

Toluene 98 98 245 [10.2] 

2 

 

H2O >99 >99 250 [10.4] 

Toluene >99 >99 250 [10.4] 

3 

 

H2O >99 >99 250 [10.4] 

Toluene >99 >99 250 [10.4] 

4 

 

H2O 89 89 222 [9.2] 

Toluene >99 >99 250 [10.4] 

5 

 

H2O 85 85 212 [8.8] 

Toluene 91 91 227 [9.4] 

6 

 

H2O 88 88 220 [9.1] 

Toluene 25 25 62 [2.6] 
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a Reaction conditions: alcohol (0.5 mmol), K2CO3 (0.75 mmol), solvent (2 mL), catalyst (10 mg 

containing 0.2 mol % Pd), and O2 atmosphere. 
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Table 4. Comparison catalytic activity of MXCPILNHG-2@Pd with other reported Pd catalysts 

in aerobic oxidation of benzyl alcohol 

Catalyst T (oC) Pd (mol %) 

Conv. 

(%) 

TON [TOF (h-1)] 

Pd@PMO-IL [40] 95 0.25 >99 396 [132] 

PdNP@poly-POSS-Tmix [41] 90 1.2 >99 41.25 [6.8] 

PdNP@Extract [43] 80 2.5 95 38 [3.1] 

Pd@MIL-88B-NH2@SiO2 [51] 150 2 98 49 [4.9] 

Pd-pol [52] 100 0.5 75 150 [25] 

SiO2@APTES-Pd [53] 80 0.2 76 380 [15.8] 

PdNPs/PS [56] 85 0.5 98 98 [6.5] 

AmP-SNC/Pd(0) [58] 90 1 94 940 [940] 

Fe3O4@SiO2-2N-Pd(II) [62] 100 0.4 95 237 [29.6] 

Fe3O4@CyS-Pd [63] 50 0.36 85 472 [314] 

SiO2@Fe3O4-Pro-Pd [67] 90 0.5 96 192 [19.2] 

Fe3O4@ HPEI .Pd [68] r.t 1 12 12 [12] 

MNP-triazolyl- Pd(OAc)2 [74] 90 1.9 90 23.7 [5.3] 

MXCPILNHG-2@Pd 90 0.2 >99 250*5 [10.4] 
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