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Nitro group has unique chemical properties such as being 
common explosophore used globally to make explosives and 
having strong electron withdraw effects applied in dyes, 
perfumes, pharmaceuticals and plastics.

1 
Aromatic nitro 

compounds showed interesting applications as explosives and 
dyes as well as being the important starting material with 
broad applications such as the synthesis of indole

2
 and indigo

3
. 

These aromatic nitro compounds were typically obtained from 
the electrophilic substitution reaction with the nitrating 
reagent such as a mixture of nitric acid and sulfuric acid.

4
 

Most of these classical methods were under harsh conditions 
as well as utilized hazardous reagents which could generate 
wastes to pose environmental problems.

5
 Even though, many 

aromatic nitro compounds were difficult to obtain by the 
direct nitration of the aromatic ring or through nitration of 
anionic intermediates originating from alkyl halides, alkenes 
or ketones. Therefore, the oxidation of aromatic amines to 
corresponding nitroarenes should be an additional choice with 
the readily available oxidants. Several methods for the direct 
oxidation of aromatic amines into corresponding nitroarenes 
have been published already using pertrifluoroacetic acid

6a
, 

dimethyldioxirane
6b

, oxone
®6c

, tetra-n-alkylammonium 
bromates6d, and potassium iodide6e or Rh2(cap)4

6f associate  
TBHP, etc..  

Previously reported methodologies utilized m-
chloroperbenzoic acid (m-CPBA) to oxidize the steroidal 

amines
7a

, aliphatic amines
7c

 and diamondoid amines
7e

 into 
their corresponding nitro compounds

7
. However, the 

oxidation of aromatic amines was not conducted. In the 
present work, the oxidant m-CPBA was found to be also 
applicable for the preparation of nitroarenes. Herein, this 
report described an approach to various nitroarenes from 
aromatic amines with m-CPBA in 1,2-dichloroethane.  

To explore the potential of this reaction, aniline 1a was 
treated with m-CPBA under refluxing 1,2-dichloroethane. 
After several trials, using 4.0 equivalents of m-CPBA was 
found to be suitable. The effect of solvents was briefly 
investigated. The reaction in CH3CN proceeded with lower 
yield (Table 1, entry 5) and the desired nitrobenzene 2a could 
not be detected in THF (Table 1, entry 6). 1,2-dichloroethane 
was superior to other solvents (Table 1, entry 3). 

To understand the substrate scope, a wide range of aromatic 
amines were tested under the optimized reaction condition 
(Table 2). Electron-donating or electron-withdrawing 
substituent produced good to excellent yields, indicating that 
the reaction was little sensitive to electronic effects. 
Interestingly, the synthesis of 4-nitroanisile 2b could achieve 
at r.t. instead of refluxing (Table 2, entry 2). Under the present 
oxidation system, the steric effect of substrates was not 
significant. The transformations of substituted             
aromatic amines showed excellent tolerance of functional 
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A versatile and highly efficient approach for the synthesis of nitroarenes from aromatic 
amine using m-CPBA has been developed. This oxidation reaction was operationally 
straightforward and proceeded to afford products in good isolated yields.  

2013 Elsevier Ltd. All rights reserved.
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Table 1. Optimization of Reaction Conditions

a 

 

a Reaction conditions: aniline 1 (2.0 mmol), solvent (20.0 mL), N2 atmosphere. 

b Isolated yields. 

c ND: not determined. 

groups including aromatic halides, ester (Table 2, entry 15), 
amide (Table 2, entry 16) and ethers (Table 2, entries 2 and 
17). When strong electron-withdrawing groups such as 
sulfone or nitro group attached on the benzene ring alone, the 
reaction could still provide the target compounds with high 
yield (Table 2, entries 7, 12, and 21-22). Nevertheless, the 
reaction could not proceed at all with the substrates bearing 
nitro and sulfone group at the same time. (Table 2, entries 19-
20). The oxidation of 1,4-benzendiamine 1j could work by 
increasing the equivalents of m-CPBA to afford 1,4-
dinitrobenzene 2g (Table 2, entry10). However, benzidine 1r 
could not produce nitro compounds even adjusting the 
reaction temperature and the amount of m-CPBA used (Table 
2, entry 18).  

Table 2. Substrate Scope
a
  

 

Entry Substrate  Product  Yieldb(%) 

1 

         

1a 

        

2a 81 

2c 

           

1b 

        

2b 95 

3 

    

1c 

    

2c 85 

4 

     

1d 

   

2d 80 

5 

     

1e 

    

2e 78 

6 

   

1f 

  

2f 81 

7 

      

1g 

   

2g 80 

8 

      

1h 

  

2h 74 

9 

      

1i 

   

2i 58 

10d 

       

1j 

     

2g 56 

11 

   

1k 

   

2k 61 

12 

         

1l 

         

2l 63 

13 

        

1m 

        

2m 71 

14 

  

1n 

    

2n 82 

15 

     

1o 

  

2o 80 

16 

   

1p 

     

2p 92 

17 

        

1q 

        

2q 91 

18d 

    

1r 

     

2r NDe 

19 

    

 

1s 

     

2s NRe 

20 

 

1t 

 

2t NRe 

21 

 

1u 

 

2u 78 

22 

 

1v 

 

2v 87 

a All reactions were performed under refluxing 1,2-dichloroethane with 

anilines (2.0 mmol) and m-CPBA (8.0 mmol) for 10 h, unless otherwise 

noticed.  
b Isolated product.  
c The reaction was carried out at r.t.. 

Entry Solvent m-CPBA(eq.) Yields (%)b 

1 ClCH2CH2Cl 3.3 Trace 

2 ClCH2CH2Cl 3.8 72 

3 ClCH2CH2Cl 4.0 81 

4 ClCH2CH2Cl 4.5 77 

5 CH3CN 4.0 68 

6 THF 4.0 NDc 



  

 
d The reaction was performed  under refluxing 1,2-dichloroethane with 

diamines (2.0 mmol) and m-CPBA (16.0 mmol) for 10 h. 
e
 ND: not determined, NR: no reaction. 

In conclusion, an efficient and practical method for the 
synthesis of nitroarenes from aromatic amines using 
commercially available reagents m-CPBA was developed. 
The investigation of the profile of substrates was well 
demonstrated. The described chemistry expands the repertoire 
of reactions carried out by m-CPBA, a versatile oxidant with 
ever-increasing utility in chemical synthesis.  
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chromatography using hexane/ethyl acetate as eluant.  
Nitrobenzene (2a)[8a]. Yellow oil, yield 81%; 1H NMR (400 
MHz, CDCl3): δ = 8.24 (d, J = 8.3 Hz, 2H), 7.71 (t, J = 7.4 Hz, 
1H), 7.56 (t, J = 7.9 Hz, 2H); 13C NMR (100 MHz, CDCl3): δ = 
148.2, 134.6, 129.3, 123.5; GC-MS (m/z) [M]+: 123 (C6H5NO2, 
123.03). 
4-Nitroanisile (2b)[8b]. White solid, yield 95%; mp 50-51 oC; 1H 
NMR (400 MHz, CDCl3): δ = 8.21 (d, J = 9.0 Hz, 2H), 6.96 (d, J 
= 9.0 Hz, 2H), 3.91 (s, 3H); 13C NMR (100 MHz, CDCl3): δ = 
164.6, 141.5, 125.9, 114.0, 55.9; GC-MS (m/z) [M]+: 153 
(C7H7NO3, 153.04). 
4-Nitrochlorobenzene (2c)[8b]. Yellow solid, yield 85%; mp 81-
83 oC; 1H NMR (400 MHz, CDCl3): δ = 8.21-8.17 (m, 2H), 
7.54-7.27 (m, 2H); 13C NMR (100 MHz, CDCl3): δ = 146.5, 
141.4, 129.6, 124.9; MS (EI) m/z: 157 (100%), 159 (34%) [M] +.  

4-Nitrotoluene (2d)[8a]. Yellow solid, yield 85%; mp 52-53 oC; 
1H NMR (400 MHz, CDCl3): δ = 8.12 (d, J = 8.7 Hz, 2H), 7.32 
(d, J = 8.3 Hz, 2H), 2.47 (s, 3H); 13C NMR (100 MHz, CDCl3): 
δ = 146.2, 145.9, 129.8, 123.5, 21.6; MS (EI) m/z: 91 (100%), 
137 (95%) [M] +. 
2-Nitrochlorobenzene (2e)[8c]. Yellow liquid, yield 78%; 1H 
NMR (400 MHz, CDCl3): δ = 7.88 (dd, J1 = 8.1 Hz, J2 = 1.4 Hz, 
1H), 7.57-7.52 (m, 2H), 7.44-7.42 (m, 1H); 3C NMR (100 MHz, 
CDCl3): δ = 148.1, 133.2, 131.9, 127.6, 127.0, 125.6; MS (EI) 
m/z: 111 (75%), 157 (100%), 159 (33%) [M] +. 
3-Nitrochlorobenzene (2f)[8a]. Light yellow solid, yield 81%; 
mp 45-46 oC; 1H NMR (400 MHz, CDCl3): δ = 8.24 (t, J = 2.1 
Hz, 1H), 8.14 (ddd, J1 = 8.3 Hz, J2 = 2.1 Hz, J3 = 1.0 Hz, 1H), 
7.69 (ddd, J1 = 8.0 Hz, J2 = 2.0 Hz, J3 = 1.0 Hz, 1H), 7.51 (t, J = 
8.1 Hz, 1H); 13C NMR (100 MHz, CDCl3): δ = 148.8, 135.4, 
134.7, 130.4, 123.9, 121.7; GC-MS (m/z) [M]+: 157 
(C6H4ClNO2, 156.99). 
1,4-Dinitrobenzene (2g). Yellow solid, yield 80%; mp 165-166 
oC; 1H NMR (400 MHz, CDCl3): δ = 8.44 (s, 4H); 13C NMR 
(100 MHz, CDCl3): δ = 151.1, 124.9; MS (EI) m/z: 168 (100%) 
[M] +. 
1-Bromo-2-nitrobenzene (2h)[8c]. Yellow solid, yield 74%; mp 
43-45 oC; 1H NMR (400 MHz, CDCl3): δ = 7.86-7.83 (m, 1H), 
7.76-7.74 (m, 1H), 7.49-7.42 (m, 2H); 13C NMR (100 MHz, 
CDCl3): δ = 149.9, 135.1, 133.2, 128.3, 125.6, 114.5; GC-MS 
(m/z) [M]+: 201 (C7H7NO3, 200.94); MS (EI) m/z: 155 (79%), 
157 (79%), 201 (100%), 203 (100%) [M] +. 
1-Nitronaphthalene (2i). Yellow solid, yield 58%; mp 55-57 
oC; 1H NMR (400 MHz, CDCl3): δ = 8.55 (d, J = 8.7 Hz, 1H), 
8.22 (dd, J1 = 7.6 Hz, J2 = 1.1 Hz, 1H), 8.11 (d, J = 8.2 Hz, 1H), 
7.95 (d, J = 8.2 Hz, 1H), 7.71 (ddd, J1 = 8.6 Hz, J2 = 7.0 Hz, J3 = 
1.3 Hz, 1H), 7.63-7.60 (m, 1H), 7.53 (dt, J1 = 7.9 Hz, J2 = 1.2 
Hz, 1H); 13C NMR (100 MHz, CDCl3): δ = 146.6, 134.7, 134.4, 
129.5, 128.6, 127.4, 125.1, 124.1, 124.0, 123.1; MS (EI) m/z: 
127 (94%), 173 (100%) [M] +. 
1,3,5-Trimethyl-2-nitrobenzene (2k)[8d]. Pale yellow solid, 
yield 61%; mp 43-45 oC; 1H NMR (400 MHz, CDCl3): δ = 6.92 
(s, 2H), 2.31 (s, 3H), 2.28 (s, 6H); 13C NMR (100 MHz, CDCl3): 
δ = 149.8, 140.3, 129.6, 129.4, 21.0, 17.5; MS (EI) m/z: 148 
(100%), 165(62%) [M] +. 
2,6-Dinitrotoluene (2l). Pale yellow solid, yield 63%; mp 65-66 
oC; 1H NMR (400 MHz, CDCl3): δ = 8.00 (d, J = 8.1 Hz, 2H), 
7.53 (t, J = 8.1 Hz, 1H), 2.59 (s, 3H); 13C NMR (100 MHz, 
CDCl3): δ = 151.7, 127.5, 127.5, 127.3, 14.8; MS (EI) m/z: 165 
(100%), 182 (3%) [M] +. 
2-Bromo-4-fluoro-1-nitrobenzene (2m)[8e]. Yellow solid, yield 
71%; mp 42-43 oC; 1H NMR (400 MHz, CDCl3): δ = 7.97 (dd, 
J1 = 9.1 Hz, J2 = 5.2 Hz, 1H), 7.49 (dd, J1 = 7.8 Hz, J2 = 2.7 Hz, 
1H), 7.18 (ddd, J1 = 9.1 Hz, J2 = 7.2 Hz, J3 = 2.7 Hz, 1H); 13C 
NMR (100 MHz, CDCl3): δ = 163.7 (d, 1

JCF = 260 Hz), 146.1, 
127.9 (d, 3

JCF = 10 Hz), 122.5 (d, 2
JCF = 26 Hz), 116.4 (d, 3JCF = 

11 Hz), 115.5 (d, 2
JCF = 23 Hz); 19F (376 MHz, CDCl3): δ = -



  

 
102.9--103.0 (m, 1F); MS (EI) m/z: 189 (99%), 191 (100%), 219 
(96%), 221 (97%) [M] +. 
4-Bromo-2-fluoro-1-nitrobenzene (2n)[8e]. Yellow solid, yield 
82%; mp 86-88 oC; 1H NMR (400 MHz, CDCl3): δ = 7.97 (t, J = 
8.3 Hz, 1H), 7.52-7.46 (m, 2H); 13C NMR (100 MHz, CDCl3): δ 
= 155.4 (d, 1

JCF = 270 Hz), 138.5, 129.4 (d, 3
JCF = 9 Hz), 128.1 

(d, 3
JCF = 4 Hz), 127.2 (d, 4

JCF = 3 Hz), 122.1 (d, 2
JCF = 24 Hz); 

19F (376 MHz, CDCl3): δ = -114.3--114.5 (m, 1F); HRMS (EI) 
m/z [M]+ calculated for C6H3BrFNO2: 220.9304, found: 
220.9311. 
Methyl nitrophenylacetate (2o)[8b]. Yellow solid, yield 80%; 
mp 53-54 oC; 1H NMR (400 MHz, CDCl3): δ = 8.18 (d, J = 8.6 
Hz, 2H), 7.47 (d, J = 8.7 Hz, 2H), 3.75 (s, 2H), 3.73 (s, 3H); 13C 
NMR (100 MHz, CDCl3): δ = 170.6, 147.2, 141.3, 130.3, 123.7, 
52.4, 40.7; MS (EI) m/z: 106 (100%), 195 (42%) [M] +. 
N-(4-Nitrophenyl)ethanamide (2p)[8f]. Pale yellow solid, yield 
92%; mp 210-211 oC; 1H NMR (400 MHz, DMSO-d6): δ = 
10.54 (s, 1H), 8.21 (d, J = 9.1 Hz, 2H), 7.82 (d, J = 9.2 Hz, 2H), 
2.12 (s, 3H); 13C NMR (100 MHz, DMSO-d6): δ = 169.3, 145.4, 
142.0, 124.9, 118.5, 24.2; HRMS (EI) m/z [M]+ calculated for 
C8H8N2O3: 180.0535, found: 180.0536. 
1-Nitro-2-phenoxybenzene (2q)[8g]. Light yellow liquid, yield 
91%; 1H NMR (400 MHz, CDCl3): δ = 7.94 (dd, J1 = 8.2 Hz, J2 
= 1.6 Hz, 1H), 7.52-7.46 (m, 1H), 7.40-7.36 (m, 2H), 7.18 (ddd, 
J1 = 7.4 Hz, J2 = 3.3 Hz, J3 = 1.4 Hz, 2H), 7.04 (d, J = 7.8 Hz, 
2H), 7.01 (dd, J1 = 8.4 Hz, J2 = 0.7 Hz, 1H); 13C NMR (100 
MHz, CDCl3): δ = 154.8, 149.7, 140.4, 133.1, 129.0, 124.7, 
123.6, 122.1, 119.4, 118.2; HRMS (EI) m/z [M]+ calculated for 
C12H9NO3: 215.0582, found: 215.0582. 
1-Methanesulfonyl-4-nitrobenzene (2u). Pale yellow solid, 
yield 78%; mp 133-134 oC; 1H NMR (400 MHz, CDCl3): δ = 
8.44 (d, J = 8.1 Hz, 2H), 8.17 (d, J = 8.2 Hz, 2H), 3.13 (s, 3H); 
13C NMR (100 MHz, CDCl3): δ = 150.8, 145.9, 128.9, 124.6, 
44.2; HRMS (EI) m/z [M]+ calculated for C7H8N7O4S: 201.0096, 
found: 201.0097. 
1-Methanesulfonyl-3-nitrobenzene (2v). Pale yellow solid, 
yield 87%; mp 137-138 oC; 1H NMR (400 MHz, CDCl3): δ = 
8.82 (s, 1H), 8.54 (d, J = 8.1 Hz, 1H), 8.31 (d, J = 7.8 Hz, 1H), 
7.85 (t, J = 8.0 Hz, 1H), 3.16 (s, 3H); 13C NMR (100 MHz, 
CDCl3): δ = 148.5, 142.6, 133.1, 131.0, 128.3, 123.0, 44.4; 
HRMS (EI) m/z [M]+ calculated for C7H8N7O4S: 201.0096, 
found: 201.0098. 
 
 


