RESEARCH ARTICLE

Nitroselenation of carbon-carbon triple bond by PhSeSePh and NO/O_2 or NO_2

Yutaka Nishiyama 回

Revised: 19 November 2018

Mari Sumida | Noboru Sonoda

Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka, Japan

Correspondence

Yutaka Nishiyama, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka, Japan. Email: nishiya@kansai-u.ac.jp

Abstract

When alkynes were treated with diphenyl diselenide under an atmosphere of nitric oxide and oxygen, nitroselenation of the carbon-carbon triple bond proceeded with a high regioselectivity to give the corresponding 1-nitro-2-phenylseleno alkenes. Similarly, the nitroselenation of alkynes proceeded by the reaction of the alkynes with nitrogen dioxide. The stirring of the 1,2-bis(phenylseleno) alkenes under an atmosphere of nitric oxide and oxygen also gave the corresponding 1-nitro-2phenylseleno alkenes.

1 **INTRODUCTION**

Much attention has been paid to nitric oxide, which is known to have a free radical character, in the fields of medical science and biochemistry.^[1] On the other hand, in organic synthesis, the use of nitric oxide as a reagent is quite limited because of the sparse information available on the chemical behavior of nitric oxide and the difficulty incurred in controlling its reactivity.^[2]

It has known that homolytic cleavage of the seleniumselenium bond of diorganyl diselenide, such as diphenyl diselenide, easily occurred under thermal or visible light irradiation conditions and formed the corresponding seleno center radical as a labile species. Sonoda and Ogawa reported that the treatment of alkynes and diphenyl diselenide under thermal or visible light irradiation^[4] conditions gave the corresponding^[3] 1,2-bis(phenylseleno) alkenes in moderate yields. In their manuscripts, they suggested the reaction pathway that included the addition of the phenylseleno radical formed in situ on the carbon-carbon triple bond followed by the capture of the β phenylseleno substituted vinyl carbon radical by the diphenyl diselenide (Scheme 1). Furthermore, they have developed the synthetic method of various organoselenium compounds using the addition of the phenylseleno radical to various unsaturated bonds, such as carbon-carbon and carbon-nitrogen bonds.^[5]

Our attention was the directed toward the use of nitric oxide, which has a radical character, on the synthesis of the 1-nitro-2-phenylseleno alkenes. We now found that the treatment of alkynes and diphenyl diselenide under an atmosphere of nitric oxide and oxygen or nitrogen dioxide gave the corresponding 1-nitro-2-phenylseleno alkenes in moderate to good yields. 1-Nitro-2-phenylseleno alkenes were also prepared by the stirring of 1,2-bis(phenylseleno) alkenes under an atmosphere of nitric oxide and oxygen (Scheme 2).

RESULTS AND DISCUSSION 2

The reaction of phenylacetylene (1a) and diphenyl diselenide (2) was carried out under several reaction conditions, and these results are shown in Table 1. Treatment of 2 (0.5 mmol) and ten equivalent amounts of 1a under an atmosphere of NO at 80°C for 5 hours, followed by oxidation in air at room temperature led to the formation of 1-nitro-1-phenyl-2-phenylselenoethylene (3a) in low yield along with a small amount of 1,2-bis(phenylseleno)-1-phenyleth ylene (4a) (Figure S1) (entry 1). For the nitroselenation of 1a, a phenylseleno group was regioselectively introduced at the terminal position of **1a** and nitro group was introduced at the inner one of 1a. The yield of 3a was improved by increasing the amounts of 1a (entries 1-5). At higher reaction temperatures (100 and 120°C), the yields of both 3a and 4a increased, but the selectivity of 3a decreased (entries 4, 6 and 7). Surprisingly, when air and oxygen were introduced into the reaction solution, the yield of 3a was dramatically increased (entries 8 and 9). When 1a was allowed

A tribute to Professor Naomichi Furukawa on the Occasion of his 82nd birthday - By Invitation only

SCHEME 1 Reaction of alkyne and diphenyl diselenide.

SCHEME 2 Synthesis of 1-nitro-2-phenylseleno alkenes

to react with **2** under an atmosphere on NO and a small amount of oxygen at 80°C for 15 hours, **3a** was obtained in an 82% yield (entry 10). Similarly, the nitroselenation of the carbon-carbon triple bond of **1a** proceeded under an atmosphere of NO₂ to give **3a** in 77% yield (entry 11).

To determine the applicability of the nitroselenation of alkynes, various aryl substituted acetylenes was allowed to react with diphenyl diselenide (2) under a NO/O₂ atmosphere, and these results are shown in Scheme 3.¹ In the case of 4-methylphenyl acetylene 1b and 4-methoxyphenyl acetylene 1c, in which the electron donating groups were substituted on the aromatic ring, nitroselenation of the carbon-carbon triple bond proceeded with regioselectively to form the corresponding 1-aryl substituted 1-nitro-2-phenylseleno alkenes in 87% and 82% yields, respectively (Figure S2 and S3). Similarly, an electron withdrawing group, such as the fluorine, substituted aryl acetylene 1d, was nitroselenated by PhSeSePh, NO and O₂ to give 1-(4-fluorophenyl)-1-nitro-2-p henylselenoethylene 3d in 95% yield (Figure S4). However, in the case of alkyl substituted terminal and inner alkynes, the yields of phenylselenonitrated products were very low. 1-Aryl-1-nitro-2-phenylseleno alkenes were also prepared by the reaction of alkynes and 2 under NO₂ atmosphere in moderate to good yields (Scheme 4).

Figure 1 shows the time dependence curve for the reaction of phenylacetylene (1a) and diphenyl diselenide (2) at 80°C under an atmosphere of NO and a small amount of O_2 . During an earlier stage of the reaction, the yield of 3a was almost same as that of 4a. After 5 hours, the yield of 3a gradually increased; however, the yield of 4a had not increased. From the result, it was suggested that 3a was also produced through the formation of 4a. In fact, when 4a was stirred at 80°C for 5 hours, under an atmosphere of NO and a small amount of O_2 , 3a was formed in 80% yield (Equation 1). It is shown that the bisphenylselenation of alkynes with diphenyl diselenide under visible light irradiation with a Hg lamp efficiently proceeded to give the corresponding 1,2-bis(phenylseleno)alkenes.^[4] In order to decrease the amount of alkyne used, two-step procedures were next investigated. When the treatment of diphenyl diselenide and a 1.5 equivalent amount of phenylacetylene under visible light irradiation for 5 hours followed by stirring the reaction mixture under a NO/O₂ atmosphere at 80°C for 5 hours, 1-nitro-1-phenyl-2-phenylselenoethylene (**3a**) was obtained in 98% yield. Various 1-aryl- and 1-aryl-2-alkyl substituted 1-nitro-2-phenylselenoethylenes (Figure S5) were formed in moderate to good yields by using the two-step procedures (Scheme 5).

Possible pathways for the nitroselenation of the alkynes are shown in Scheme 6. As already disclosed, the initial step of the reaction was the addition of the phenylseleno radical, which was generated by the homolytic cleavage of the selenium-selenium bond of diphenyl diselenide (**2**), to the carbon-carbon triple bond to form the β -phenylseleno substituted vinyl carbon radical (**5**).^[6] The vinyl radical, **5**, reacted nitrogen dioxide, which was generated by the oxidation of NO by O₂, to afford the 1-nitro-1-aryl-2-phenylselenoethyle nes **3**. On another pathway, the 1,2-bis(phenylseleno) alkenes **4**, which was formed by the capture of **5** by **2**, reacted with nitric oxide or nitrogen dioxide to regenerate the vinyl radical **5**.² **5** then reacted with NO/O₂ or NO to give the corresponding 1-nitro-1-aryl-2-selenoethylenes **3**.^[7,8]

3 | CONCLUSIONS

In summary, we developed a novel synthetic method of 1-nitro-2-phenylseleno alkenes by the reaction of alkyne and NO/O_2 or NO_2 . 1-Nitro-2-phenylseleno alkenes were also prepared when 1,2-bis(phenylseleno) alkenes were treated with NO/O_2 .

4 | EXPERIMENTAL

The FT-IR spectra were recorded by a JASCO FT/IR-4100 instrument. ¹H-NMR spectra were recorded at 400 MHz and ¹³C-NMR spectra at 100 MHz by a JEOL JNM-ECS-400 or a JEOL JNM-AL400. Chemical shifts were reported in ppm relative to tetramethylsilane or the residual solvent as the internal standard. GLC mass spectral analyses were performed

¹We could not determine the structure of geometric isomers and the ratio of geometric isomers.

²When 1,2-bis(phenylseleno) alkene was stirred under NO atmosphere, the formation of alkyne and diphenyl diselenide was observed. On the other hand, under NO₂ or O₂ atmosphene, alkyne and diphenyl diselenide were not formed. From these results, we proposed that deselenation of 1,2-bis(phenylseleno) alkene proceeded under NO or NO/O₂.

TABLE 1 Reaction of phenylacetylene (1a) and diphenyl diselenide (2)^a

					Yield (%) ^b	
Entry	Condition	1a	Temp. (°C)	Time (h)	3 a	4a
1	NO	5 mmol	80	5	5	Trace
2	NO	1 mL	80	5	10	2
3	NO	3 mL	80	5	15	5
4	NO	5 mL	80	5	18	6
5	NO	5 mL	50	5	4	Trace
6	NO	5 mL	100	5	13	10
7	NO	5 mL	120	5	10	27
8	NO/Air	5 mL	80	5	30	10
9	NO/O ₂	5 mL	80	5	43	7
10	NO/O ₂	5 mL	80	15	82	17
11	NO ₂	5 mL	80	15	77	17

^aReaction conditions: 2 (0.25 mmol) was used.

^bGLC yield based on **2**.

by a Shimadzu GCMS-QP5050A with CBP-M25-025. High mass spectral analyses were performed by a JEOL (JMS-T200GC). Nitric oxide, nitrogen dioxide, and oxygen were all purchased from commercial sources. Diphenyl diselenide,

SCHEME 3 Reaction of 1-aryl substituted acetylenes and 2 under NO/NO₂.

SCHEME 4 Reaction of 1-aryl substituted acetylenes and 2 under NO.

alkynes, and benzene were commercially available and were used without further purification.

Heteroatom Chemistry

4.1 | Procedure: general procedure for reaction of alkyne with PhSeSePh under NO and O₂

Diphenyl diselenide (0.5 mmol, 0.157 g) and the alkyne (5 mL) were stirred under an atmosphere of NO and small amount of O_2 at 80°C for 15 hours. After the reaction was complete, H_2O was added to the reaction mixture and extracted with ethyl acetate. The organic layer was dried using MgSO₄. The resulting mixture was filtered, and the filtrate was concentrated. Purification of the residue by silica gel column chromatography (elute: mixture of C_6H_{14} and ethyl acetate) afforded the 1-nitro-2-phenylseleno alkenes. The structures of the products were assigned by their ¹H and ¹³C-NMR, IR and high-resolution mass spectra analysis.

4.2 | Two steps procedure for reaction of alkyne with PhSeSePh under NO and O₂

Diphenyl diselenide (2.0 mmol, 0.628 g) and the alkyne (3 mmol) were stirred under irradiation of tungsten lamp at 500 W and 40°C for 24 hours. After the reaction was complete, benzene (5 mL) was added to the reaction mixture and the mixture was stirred under an atmosphere of NO and a small amount of O_2 at 80°C for 5 hours, then extracted with ethyl acetate. The organic layer was dried using MgSO₄. The resulting mixture was filtered, and the filtrate was

3 of 5

FIGURE 1 Time dependent curve for the reaction of phenylacetylene and diphenyl diselenide.

concentrated. Purification of the residue by silica gel column chromatography (elute: mixture of C_6H_{14} and ethyl acetate) afforded the 1-nitro-2-phenylseleno alkenes.

4.2.1 | 1-Nitro-1-phenyl-2phenylselenoethylene (3a)

¹H-NMR (400 MHz, CDCl₃) δ 8.35 (d, J = 7.2 Hz, 1H); 7.85 (d, J = 6.0 Hz, 1H), 7.66 (t, J = 7.2 Hz, 1H), 7.60 (s, 1H), 7.56-7.50 (m, 3H), 7.32 (d, J = 7.2 Hz, 1H), 7.14-6.97 (m, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 136.4, 133.9, 130.6, 130.5, 130.3, 129.6, 129.0, 128.6, 128.4, 128.4, 127.3, 126.5, 125.8, 100.1; IR (neat) 3059, 1654, 1596, 1574, 1557, 1449, 1424, 1322, 1243, 893, 769, 725, 683, 652 cm⁻¹; MS: *m/z* Calcd. for C₁₄H₁₁NO₂Se: 304.9955; Found: 304.9942.

4.2.2 | Mixture of (*E*)- and (*Z*)-1-nitro-1-(4-methylphenyl)-2-phenyl-selenoethylene (3b)

¹H-NMR (400 MHz, CDCl₃) δ 7.68 (d, J = 6.4 Hz, 1H), 7.43-7.57 (m, 2H), 7.28-7.00 (m, 6H), 6.88 (s, 0.67H), 6.58 (s, 0.33 H), 2.38 (s, 2H), 2.19 (s, 1H); ¹³C-NMR (100 MHz, CDCl₃) δ 160.9, 156.8, 140.0, 139.3, 136.4, 136.4, 136.1, 133.6, 131.5, 131.5, 131.2, 130.4, 130.3, 129.2, 128.7, 128.6, 128.4, 128.2, 127.4, 126.0, 21.5, 21.2; IR (neat) 3056, 3026,

2919, 1607, 1591, 1557, 1514, 1477, 1438, 1318, 1258, 1183, 1021, 976, 804, 742, 690 cm⁻¹; MS: m/z Calcd. for C₁₅H₁₃NO₂Se: 319.0112; Found: 319.0128.

4.2.3 | 1-Nitro-1-(4-methoxyphenyl)-2phenylselenoethylene (3c)

¹H-NMR (400 MHz, CDCl₃) δ 7.58 (s, 1H), 7.36 (s, 2H), 7.23-7.15 (m, 2H), 7.07 (t, J = 7.6 Hz, 1H), 6.94 (d, J = 8.8 Hz, 2H), 6.60 (d, J = 8.4 Hz, 2H), 3.69 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 160.6, 160.3, 136.0, 133.5, 130.3, 128.7, 128.7, 128.4, 128.2, 126.7, 113.3, 55.2; IR (neat) 3075, 2932, 2837, 1603, 1556, 1508, 1477, 1438, 1316, 1252, 1174, 1111, 1030, 899, 834, 805, 790, 741, 691, 658, 628, 558 cm⁻¹: *m/z* Calcd. for C₁₅H₁₃NO₃Se: 335.0061; Found: 335.0038.

4.2.4 | 1-Nitro-1-(4-fluorophenyl)-2phenylselenoethylene (3d)

¹H-NMR (400 MHz, CDCl₃) δ 7.67-6.60 (m, 10H); ¹³C-NMR (100 MHz, CDCL₃) δ 164.0, 159.3, 136.3, 136.2, 133.8, 130.6, 130.5, 130.4, 130.3, 129.0, 128.8, 127.7, 115.1, 114.8; IR (neat) 3078, 1601, 1562, 1505, 1478, 1438, 1318, 1259, 1230, 1157, 1096, 1000, 899, 838, 805, 740, 690, 655, 627, 544 cm⁻¹: *m*/*z* Calcd. for C₁₄H₁₀FNO₂Se: 322.9861; Found: 322.9874.

4.2.5 | Mixture of (*E*)- and (*Z*)-1-nitro-2-phenylseleno-1-phenyl-1-butene (3e)

¹H-NMR (400 MHz, CDCl₃) δ 7.25-6.82 (m, 10H), 3.01 (q, J = 7.6 Hz, 0.4H), 2.45 (q, J = 7.6 Hz, 1.6H), 1.25 (t, J = 7.6 Hz, 0.6H), 1.00 (t, J = 7.6 Hz, 2.4H); ¹³C-NMR (100 MHz, CDCl₃) δ 154.3, 146.6, 136.8, 136.8, 136.0, 135.5, 129.6, 128.7, 128.5, 128.4, 128.2, 128.1, 128.0, 127.7, 127.7, 127.7, 127.6; IR (neat) 3054, 2967, 2933, 1568, 1522, 1474, 1457, 1438, 1428, 1294, 1273, 1052, 1023, 891, 755, 740. 704, 692 cm⁻¹: m/z Calcd. for C₁₆H₁₅NO₂Se: 333.0268; Found: 333.0285.

ACKNOWLEDGMENTS

Dedicated to 82nd birthday of Professor Naomichi Furukawa.

ORCID

Yutaka Nishiyama D https://orcid. org/0000-0001-5687-5699

REFERENCES

- For recent reviews concerning the chemistry of NO in the fields of medical science and biochemistry, see: a) In Nitric Oxide; Biology and Pathobiology (Eds: L. Ignarro, B. Fieeman), Academic Press, 2017; b) In Nitric Oxide (Eds: J.-L. Balligand, B. Mayer), Springer, New York 2000.
- [2] For recent reviews concerning the use of NO in the organic chemistry, see: J. Hartung, *Chem. Rev.* 2009, 109, 4500.
- [3] a) A. Ogawa, N. Takami, M. Sekiguchi, H. Yokoyama, H. Kuniyasu,
 I. Ryu, N. Sonoda, *Chem. Lett.* **1991**, *20*, 2241; b) T. G. Back, M. V.
 Krishna, *J. Org. Chem.* **1988**, *53*, 2533.
- [4] A. Ogawa, H. Yokoyama, K. Yokoyama, T. Masawaki, N. Kambe, N. Sonoda, J. Org. Chem. 1991, 56, 5721.
- [5] a) A. Ogawa, in Main Group Metals in Organic Synthesis, Vol. 2 (Eds: H. Yamamoto, K. Oshima), Wilet-VCH: Weinheim, Germany 2004, 813; b) A. Ogawa, in Comprehensive Organic Synthesis II (Ed: P Knochel), Elsevier, 4.06 2014, 392; c) A. Nomoto, S. Hayashi, T. Fujiyama, T. Ikeda, K. Hirata, J. Tohoma, K. Kakiuchi, W. Nakanishi, A. Ogawa, *Bull. Chem. Soc. Jpn.* 2014, 87, 550; d) Y. Kobiki, S. Kawaguchi, A. Ogawa, *Tetrahedron Lett.* 2013, 54, 5453; e) Y. Kobiki, S. Kawaguchi, T. Ohe, A. Ogawa, *Beil. J. Org. Chem.* 2013, 117, 1141; f) T. Tamai, A. Nomoto, K. Tsuchii, Y. Minamida, T. Mitamura, M. Sonoda, A. Ogawa, *Tetrahedron* 2012, 68, 10516; g) A. Ogawa, T. Tamai, T. Mitamura, A. Nomoto, *Pure Appl. Chem.* 2013, 85, 785 and references therein.
- [6] The formation of β-phenylseleno substituted vinyl carbon radical by the addition of carbon-carbon triple bond of acetylene appears to be the rate-determining step. See: a) O. Ito, *J. Am. Chem. Soc.* 1983, *105*, 850; b) G. A. Russell, H. Tashtoush, *J. Am. Chem. Soc.* 1983, *105*, 1398.
- [7] It is shown that nitrosothiols selectively decompose via S,N homolysis upon photoexcitation or thermal activation to give the corresponding disulfides and nitric oxide. See: a) D. L. H. Williams, *Acc. Chem. Res.* 1999, *32*, 869; b) M. D. Bartberger, K. N. Houk, S. C. Powell, L. D. Mannion, K. Y. Lo, J. S. Stamler, E. J. Toone, *J. Am. Chem. Soc.* 2000, *122*, 5889.
- [8] Goto and Kawashima have reported the isolation of Senitrososeleno. See: K. Shimada, K. Goto, T. Kawashima, N. Takagi, Y.-K. Choe, S. Nagase, J. Am. Chem. Soc. 2004, 126, 13238.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of the article.

How to cite this article: Nishiyama Y, Sumida M, Sonoda N. nitroselenation of carbon-carbon triple bond by PhSeSePh and NO/O₂ or NO₂. *Heteroatom Chem*. 2018;29:e21480. <u>https://doi.org/10.1002/hc.21480</u>