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Pseudozyma (Candida) antarctica lipase B (CAL-B, Novozym 435�) is one of the most widely used and out-
standing biocatalysts. However, CAL-B-catalyzed transesterification of ortho-substituted 1-phenylethanol
analogs suffers low conversion. In this research, the reactions were accelerated by using CO2-expanded
liquids, liquids expanded by dissolving pressurized CO2, such as CO2-expanded hexane or CO2-expanded
MeTHF.

� 2020 Elsevier Ltd. All rights reserved.
Introduction

Biocatalysts, especially lipases, have been studied extensively
[1,2]. Among them, Pseudozyma (Candida) antarctica lipase B
(CAL-B, Novozym 435�) is one of the most widely used and out-
standing biocatalysts; CAL-B catalyzes transesterification of a wide
range of secondary alcohols in organic solvents smoothly with
excellent enantioselectivity [3–7]. However, CAL-B-catalyzed
transesterification of ortho-substituted 1-phenylethanol analogs
suffers much lower conversions than those of meta and para- sub-
stituted analogs (Supplementary information Section 2 and
Table S1). Due to the limitation of the substrate scope of CAL-B,
the dynamic kinetic resolution of ortho-substituted 1-phenyletha-
nols also resulted in considerable retardations in the reactivity [7].
For example, reaction of 1-(20-bromophenyl)ethanol took 7 days to
complete whereas that of 1-phenylethanol took 3 h. The lipase-cat-
alyzed resolution reaction became rate-limiting in the overall reac-
tions. It was also reported that reactivities of Burkholderia
(Pseudomonas) cepacia lipase for transesterification of ortho-substi-
tuted 1-phenylethanol analogs were extremely lower than those of
meta- and para-substituted analogs [8].

The limitation of biocatalysts has been overcome by mutations
and chemical modifications of enzymes and solvent engineering
[1,9–17]. For solvent engineering, sustainable solvents should be
should be chosen since they have been generating a massive
amount of waste and burden both economically and environmen-
tally [18,19]. Therefore, methods for minimizing the usage of sol-
vents and replacing traditional organic solvents by
environmentally friendly alternatives have been studied exten-
sively [20–22]. As sustainable solvents, CO2 related solvents such
as supercritical CO2 (scCO2), liquid CO2 and CO2-expanded liquids
have attracted great attentions [23–27]. Among them, CO2-
expanded liquids, liquids expanded by dissolving CO2, have an
advantage over scCO2 and liquid CO2; CO2-expanded liquids can
be used under lower pressures with wider temperature ranges
than scCO2 and liquid CO2 [23]. As a liquid to be expanded by
CO2, it is desirable to use bio-based solvents such as 2-methylte-
trahydrofuran (MeTHF), which can be derived from lignocellulosic
biomass and has recently gained increasing interests as a promis-
ing solvent for various synthesis applications [28–30], including
biocatalysis [31].

Previously, we have reported the utilization of CO2-expanded
bio-based liquids as effective reaction media for transesterification
of alcohols catalyzed by CAL-B [27,32,33]. As shown in Fig. 1, the
reaction is accelerated especially for 1-(20-bromophenyl)ethanol
using CO2-expanded MeTHF. However, ortho-substituted 1-pheny-
lethanol analogs, except 1-(20-bromophenyl)ethanol, have not
been used as substrates although these compounds are important
as chiral intermediates for pharmaceuticals [34–38]. To assess the
effectiveness of CO2-expanded liquids for biocatalysis further, in
this study, we investigated CAL-B-catalyzed transesterification of
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Fig. 1. CAL-B-catalyzed transesterification of 1-phenylethanol and 1-(20-bromophenyl)ethanol in CO2-expanded MeTHF [27,32,33]. aReaction conditions: substrate
(0.40 mmol), vinyl acetate (0.53 mmol), Novozym 435� (10 mg), MeTHF (10 mL) or CO2-expanded MeTHF (10 mL, MeTHF concentration 10% v/v, 6.0 MPa), 20 �C, 1 h [32].
bReaction conditions: substrate (0.10 mmol), vinyl acetate (0.53 mmol), Novozym 435� (10 mg), MeTHF (10 mL) or CO2-expanded MeTHF (10 mL, MeTHF concentration 10%
v/v, 6.0 MPa), 20 �C, 5 h [33].
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various ortho-substituted 1-phenylethanol analogs 1a-7a in CO2-
expanded MeTHF and CO2-expanded hexane (Fig. 2). 1a-5a were
used to examine the ortho substituent effect, while 6a and 7a were
selected to examine the potential of this reaction to synthesize chi-
ral 6b and 7b, key intermediates of NEK2 kinase inhibitor [34,36]
and c-Met/ALK inhibitor (Crizotinib), [37,38] respectively. The
activities of CAL-B were found to be significantly higher in both
CO2-expanded MeTHF and CO2-expanded hexane than in the cor-
responding neat liquids without expansion with CO2.

Results and discussion

CAL-B-catalyzed transesterification of various ortho-substituted
1-phenylethanol analogs 1a-7a in MeTHF and in CO2-expanded
MeTHF was examined at 50 �C. As shown in Table 1, the reaction
in CO2-expanded MeTHF showed higher conversion than those in
neat MeTHF for the reaction of 1a-5a. However, the reactions of
6a and 7a, to afford the pharmaceutical intermediates, hardly pro-
ceeded both in MeTHF and in CO2-expanded MeTHF. For the reac-
tion of 1a-5a in CO2-expanded MeTHF, the smaller the size of the
substituents are, the better the conversions were. As listed in
Table S2, the similar effect of size of ortho substituents can be seen
for other reactions such as the dynamic kinetic resolution of ortho-
substituted 1-phenylethanol analogs by CAL-B and dicarbonylchlo-
rido (pentabenzylcyclopentadienyl)ruthenium in toluene [7] and
Fig. 2. CAL-B-catalyzed transesterification of ortho-substituted 1-phe

2

hydrolysis of ortho-substituted 1-phenylethyl acetate analogs by
Bacillus subtilis esterase (BsE) [39]. It can be also seen for other bio-
catalytic reactions such as oxidation of ortho-substituted benzalde-
hyde analogs by Geotrichum candidum aldehyde dehydrogenase
[40] and bovine lens aldehyde dehydrogenase [41], and asymmet-
ric reduction of ortho-substituted acetophenone analogs by a
mutant W288A of G. candidum acetophenone reductase (GcAPRD)
[15]. On the other hand, the enantioselectivities were excellent
for all reactions proceeded in CO2-expanded MeTHF; ee of transes-
terification products of 1a-5a was >99% (R) regardless of the kind
of substituents. The excellent enantioselectivity of CAL-B was also
reported for transesterification in CO2-expanded MeTHF using
other types of substrates such as 1-adamantylethanol, 1-(1-naph-
thyl)ethanol, 2-octanol, etc. [27,32,33] and for transesterification
in supercritical carbon dioxide using meta- and para-substituted
1-phenylethanol analogs such as 1-(30-trifluoromethylphenyl)
ethanol and 1-(40-bromophenyl) ethanol [42]. Therefore, the excel-
lent enantioselectivity of CAL-B was not affected when the conver-
sion was improved by expanding the solvent by CO2.

Then, the kind of solvents to be expanded by CO2 was investi-
gated for the CAL-B-catalyzed transesterification of 3a. Since CO2

expanded MeTHF was reported to be best among the biobased sol-
vents tested for the transesterification of 1-adamantylethanol by
CAL-B (c-valerolactone, diethyl carbonate, MeTHF, 2-methylfuran,
p-cymene, (+)-limonene and (�)-limonene) [32], conventional
nylethanol analogs (1a-7a) in CO2-expanded liquids [34,36–38].



Table 1
Comparison of CAL-B-catalyzed transesterification of ortho-substituted 1-phenylethanol analogs in MeTHF and in CO2-expanded MeTHF.

Substrate Solvent Product Conv.a (%) eep (%)

OHR R = F 1a MeTHF 1b 2.0 N.d.
CO2-expanded MeTHF 24 >99

Cl 2a MeTHF 2b <1 N.d.
CO2-expanded MeTHF 11 >99

Br 3a MeTHF 3b <1b N.d.
CO2-expanded MeTHF 5.6b >99

CH3 4a MeTHF 4b <1 N.d.
CO2-expanded MeTHF 9.1 >99

OCH3 5a MeTHF 5b 1.2 N.d.
CO2-expanded MeTHF 18 >99

CF3 6a MeTHF 6b <1 N.d.
CO2-expanded MeTHF <1 N.d.

OHCl

Cl

F
7a MeTHF 7b <1 N.d.

CO2-expanded MeTHF <1 N.d.

Reaction conditions: 1a-7a (0.10 mmol), vinyl acetate (0.20 mmol), Novozym 435� (10 mg), MeTHF (10 mL) or CO2-expanded MeTHF (10 mL, MeTHF concentration 5% v/v,
6.0 MPa), 50 �C, 0.50 h. N.d.: not determined due to low conversions observed. eep: Enantiomeric excess of the product.

a The reactions were stopped at low conversion to show differences between the two media.
b Similar results shown in Fig. 1 were reported using different conditions [33].
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solvents were also investigated in this study. Generally, hydropho-
bic solvents have been reported to be suitable for lipase-catalyzed
transesterification [43,44]. For example, hexane was reported to be
best among the solvents tested for the transesterification of 1-phe-
nylethanol by CAL-B (vinyl acetate, THF, diisopropyl ether, chloro-
form, toluene, hexane, and isooctane) [45]. Based on these reports,
p-cymene, hexane, THF, and vinyl acetate were chosen for the
investigation for CAL-B-catalyzed transesterification of 3a at
50 �C. As shown in Table S3, CO2 expanded hexane gave the best
result, followed by CO2 expanded p-cymene. When the reactions
in solvents without expansion by CO2 were compared, hexane also
gave the best result, followed by p-cymene. The preliminary exper-
iment using MeTHF, hexane, p-cymene, diethyl carbonate, and
cyclopentyl methyl ether (CPME) at 20 �C also resulted in hexane
being the best. The hydrophobicity of hexane, as well as p-cymene,
is considered to be suitable for the reaction, and CO2 may exert the
additional positive effect.
Table 2
Comparison of CAL-B-catalyzed transesterification of ortho-substituted 1-phenyl

Substrate Solvent

OHR

R = F 1a Hexane
CO2-expanded hexan

Cl 2a Hexane
CO2-expanded hexan

Br 3a Hexane
CO2-expanded hexan

CH3 4a Hexane
CO2-expanded hexan

OCH3 5a Hexane
CO2-expanded hexan

CF3 6a Hexane
CO2-expanded hexan

CF3 6a Hexane
CO2-expanded hexan

OHCl

Cl

F
7a Hexane

CO2-expanded hexan
7a Hexane

CO2-expanded hexan

Reaction conditions: 1a-7a (0.10 mmol), vinyl acetate (0.20 mmol), Novozym
concentration 5% v/v, 6.0 MPa), 50 �C, 0.50 h. eep: Enantiomeric excess of the p

a The reactions were stopped at low conversion to show differences betwee
b 24 h.
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Then, a conventional excellent solvent for CAL-B-catalyzed
reaction, hexane, was used instead of MeTHF for the transesterifi-
cation of 1a-7a at 50 �C. The results are shown in Table 2. The reac-
tions in CO2-expanded hexane gave better conversions than those
in neat hexane for all substrates tested. The conversions in neat
hexane and CO2-expanded hexane were also higher than those in
neat MeTHF and CO2-expanded MeTHF (Table 1), respectively. It
is probably due to the high hydrophilicity of MeTHF as reported
in other lipase-catalyzed reactions [44]. For 1a-3a, as the steric
hindrance of substituents are larger, the acceleration effects were
more profound. Importantly, the enantioselectivities of reactions
were excellent for all of the reactions proceeded except for 6a.

The effect of temperature on CAL-B-catalyzed transesterifica-
tion of 3a in CO2-expanded hexane was investigated. As shown
in Fig. 3, the conversion increased from 20 �C to 50 �C, and the
highest conversion was observed at 50 �C (23%), which is in agree-
ment with the reported optimum temperature of CAL-B-catalyzed
ethanol analogs in hexane and in CO2-expanded hexane.

Product Conv.a (%) eep (%)

1b 30 >99
e 46 >99

2b 16 >99
e 30 >99

3b 9.0 >99
e 23 >99

4b 11 >99
e 27 98

5b 29 >99
e 42 >99

6b <1 N.d.
e 1.2 N.d.

6b 13b 58
e 41b 58

7b <1 N.d.
e <1 N.d.

7b <1b N.d.
e 2.0b N.d.

435� (10 mg), hexane (10 mL) or CO2-expanded hexane (10 mL, hexane
roduct.
n the two media.
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Fig. 3. Effect of temperature on CAL-B-catalyzed transesterification of 1-(20-
bromophenyl)ethanol 3a in CO2-expanded hexane. Reaction conditions: 3a
(0.10 mmol), vinyl acetate (0.20 mmol), Novozym 435� (10 mg), CO2-expanded
hexane (10 mL, hexane concentration 5% v/v, 6.0 MPa), 0.50 h. Enantiomeric excess
of the product eep > 99% (R) under all temperatures examined.
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transesterification [46–48]. The enantioselectivities of reactions
were excellent (eep > 99% (R)), regardless of the reaction
temperature.

CAL-B-catalyzed transesterification of 1a-7a was also investi-
gated using liquid CO2 as a solvent at 20 �C. The reaction temper-
ature using liquid CO2 can be set only below the critical
temperature of CO2 (31.1 �C) [24]. As shown in Table S2, the reac-
tions in liquid CO2 at 20 �C gave lower conversions than those in
CO2-expanded hexane at 50 �C due to the difference in reaction
temperature. However, the reactions of 2a-5a in liquid CO2 at
20 �C gave higher conversions than those in hexane at 20 �C. There-
fore, the presence of a large concentration of CO2 in the solvent is
important for the CAL-B-catalyzed transesterification.

The CAL-B activity toward ortho-substituted 1-phenylethanol
analogs, which was low in neat organic solvents, was enhanced
in both CO2-expanded liquids tested (MeTHF and hexane). The
mechanism of the CO2 induced acceleration can be hypothesized
that CO2 induces enhanced transport properties [25–27] and
improved flexibility of enzymes [49–52]. Particularly, the sol-
vent-exposed residues a5, the pseudo-lid covering the entrance
of the active site, has high fluctuations in CO2 and thus allows
the lipase more tolerant to sterically hindered substrates with
ortho-substitutions [49–52]. Additionally, a plausible reason for
the difference in the degree of acceleration between the two sol-
vents, of which more drastic are found for MeTHF than for hexane,
is that CO2 increases the hydrophobicity of MeTHF, whereas neat
hexane is hydrophobic, so that the hydrophobicity of hexane does
not change significantly by the expansion with CO2.
Conclusion

CO2-expanded liquids were proven to be promising alternative
solvents for CAL-B-catalyzed transesterification of sterically hin-
dered ortho-substituted 1-phenylethanol analogs. This research
will lead to the further development of biocatalysis in CO2-
expanded liquids using different kinds of substrates and/or
enzymes in the future, especially to diminish the detrimental effect
of the ortho substituents.
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