Tetrahedron Letters 61 (2020) 152424

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

CO₂-expanded liquids as solvents to enhance activity of *Pseudozyma antarctica* lipase B towards *ortho*-substituted 1-phenylethanols

Moeko Otsu^a, Yuichi Suzuki^a, Afifa Ayu Koesoema^a, Hai Nam Hoang^b, Mayumi Tamura^a, Tomoko Matsuda^{a,*}

^a Department of Life Sciences and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan ^b Faculty of Chemical Engineering, University of Technology, Vietnam National University of Ho Chi Minh City, 268 Ly Thuong Kiet, District 10, Ho Chi Minh City 740030, Viet Nam

ARTICLE INFO

Article history: Received 23 March 2020 Revised 23 August 2020 Accepted 28 August 2020 Available online 5 September 2020

Keywords: CO₂-expanded liquid Lipase Ortho-substituted 1-phenylethanol Bio-based liquid

Introduction

Biocatalysts, especially lipases, have been studied extensively [1,2]. Among them, *Pseudozyma* (Candida) antarctica lipase B (CAL-B, Novozym 435[®]) is one of the most widely used and outstanding biocatalysts; CAL-B catalyzes transesterification of a wide range of secondary alcohols in organic solvents smoothly with excellent enantioselectivity [3–7]. However, CAL-B-catalyzed transesterification of ortho-substituted 1-phenylethanol analogs suffers much lower conversions than those of meta and para- substituted analogs (Supplementary information Section 2 and Table S1). Due to the limitation of the substrate scope of CAL-B, the dynamic kinetic resolution of ortho-substituted 1-phenylethanols also resulted in considerable retardations in the reactivity [7]. For example, reaction of 1-(2'-bromophenyl)ethanol took 7 days to complete whereas that of 1-phenylethanol took 3 h. The lipase-catalyzed resolution reaction became rate-limiting in the overall reactions. It was also reported that reactivities of Burkholderia (Pseudomonas) cepacia lipase for transesterification of ortho-substituted 1-phenylethanol analogs were extremely lower than those of meta- and para-substituted analogs [8].

The limitation of biocatalysts has been overcome by mutations and chemical modifications of enzymes and solvent engineering [1,9-17]. For solvent engineering, sustainable solvents should be

* Corresponding author. E-mail address: tmatsuda@bio.titech.ac.jp (T. Matsuda).

ABSTRACT

Pseudozyma (*Candida*) *antarctica* lipase B (CAL-B, Novozym 435[®]) is one of the most widely used and outstanding biocatalysts. However, CAL-B-catalyzed transesterification of *ortho*-substituted 1-phenylethanol analogs suffers low conversion. In this research, the reactions were accelerated by using CO₂-expanded liquids, liquids expanded by dissolving pressurized CO₂, such as CO₂-expanded hexane or CO₂-expanded MeTHF.

© 2020 Elsevier Ltd. All rights reserved.

should be chosen since they have been generating a massive amount of waste and burden both economically and environmentally [18,19]. Therefore, methods for minimizing the usage of solvents and replacing traditional organic solvents bv environmentally friendly alternatives have been studied extensively [20–22]. As sustainable solvents, CO₂ related solvents such as supercritical CO₂ (scCO₂), liquid CO₂ and CO₂-expanded liquids have attracted great attentions [23-27]. Among them, CO₂expanded liquids, liquids expanded by dissolving CO₂, have an advantage over scCO₂ and liquid CO₂; CO₂-expanded liquids can be used under lower pressures with wider temperature ranges than $scCO_2$ and liquid CO_2 [23]. As a liquid to be expanded by CO₂, it is desirable to use bio-based solvents such as 2-methyltetrahydrofuran (MeTHF), which can be derived from lignocellulosic biomass and has recently gained increasing interests as a promising solvent for various synthesis applications [28–30], including biocatalysis [31].

Previously, we have reported the utilization of CO_2 -expanded bio-based liquids as effective reaction media for transesterification of alcohols catalyzed by CAL-B [27,32,33]. As shown in Fig. 1, the reaction is accelerated especially for 1-(2'-bromophenyl)ethanol using CO_2 -expanded MeTHF. However, *ortho*-substituted 1-phenylethanol analogs, except 1-(2'-bromophenyl)ethanol, have not been used as substrates although these compounds are important as chiral intermediates for pharmaceuticals [34–38]. To assess the effectiveness of CO_2 -expanded liquids for biocatalysis further, in this study, we investigated CAL-B-catalyzed transesterification of

Fig. 1. CAL-B-catalyzed transesterification of 1-phenylethanol and 1-(2'-bromophenyl)ethanol in CO₂-expanded MeTHF [27,32,33]. ^aReaction conditions: substrate (0.40 mmol), vinyl acetate (0.53 mmol), Novozym 435[®] (10 mg), MeTHF (10 mL) or CO₂-expanded MeTHF (10 mL, MeTHF concentration 10% v/v, 6.0 MPa), 20 °C, 1 h [32]. ^bReaction conditions: substrate (0.10 mmol), vinyl acetate (0.53 mmol), Novozym 435[®] (10 mg), MeTHF (10 mg), MeTHF (10 mL) or CO₂-expanded MeTHF (10 mL) or CO₂-expanded MeTHF (10 mL, MeTHF concentration 10% v/v, 6.0 MPa), 20 °C, 5 h [33].

various *ortho*-substituted 1-phenylethanol analogs **1a-7a** in CO₂-expanded MeTHF and CO₂-expanded hexane (Fig. 2). **1a-5a** were used to examine the *ortho* substituent effect, while **6a** and **7a** were selected to examine the potential of this reaction to synthesize chiral **6b** and **7b**, key intermediates of NEK2 kinase inhibitor [34,36] and c-Met/ALK inhibitor (Crizotinib), [37,38] respectively. The activities of CAL-B were found to be significantly higher in both CO₂-expanded MeTHF and CO₂-expanded hexane than in the corresponding neat liquids without expansion with CO₂.

Results and discussion

CAL-B-catalyzed transesterification of various *ortho*-substituted 1-phenylethanol analogs **1a-7a** in MeTHF and in CO₂-expanded MeTHF was examined at 50 °C. As shown in Table 1, the reaction in CO₂-expanded MeTHF showed higher conversion than those in neat MeTHF for the reaction of **1a-5a**. However, the reactions of **6a** and **7a**, to afford the pharmaceutical intermediates, hardly proceeded both in MeTHF and in CO₂-expanded MeTHF. For the reaction of **1a-5a** in CO₂-expanded MeTHF, the smaller the size of the substituents are, the better the conversions were. As listed in **Table S2**, the similar effect of size of *ortho* substituents can be seen for other reactions such as the dynamic kinetic resolution of *ortho*substituted 1-phenylethanol analogs by CAL-B and dicarbonylchlorido (pentabenzylcyclopentadienyl)ruthenium in toluene [7] and

hydrolysis of ortho-substituted 1-phenylethyl acetate analogs by Bacillus subtilis esterase (BsE) [39]. It can be also seen for other biocatalytic reactions such as oxidation of ortho-substituted benzaldehyde analogs by Geotrichum candidum aldehyde dehydrogenase [40] and bovine lens aldehyde dehydrogenase [41], and asymmetric reduction of ortho-substituted acetophenone analogs by a mutant W288A of G. candidum acetophenone reductase (GcAPRD) [15]. On the other hand, the enantioselectivities were excellent for all reactions proceeded in CO2-expanded MeTHF; ee of transesterification products of **1a-5a** was >99% (*R*) regardless of the kind of substituents. The excellent enantioselectivity of CAL-B was also reported for transesterification in CO₂-expanded MeTHF using other types of substrates such as 1-adamantylethanol, 1-(1-naphthyl)ethanol, 2-octanol, etc. [27,32,33] and for transesterification in supercritical carbon dioxide using meta- and para-substituted 1-phenylethanol analogs such as 1-(3'-trifluoromethylphenyl) ethanol and 1-(4'-bromophenyl) ethanol [42]. Therefore, the excellent enantioselectivity of CAL-B was not affected when the conversion was improved by expanding the solvent by CO₂.

Then, the kind of solvents to be expanded by CO_2 was investigated for the CAL-B-catalyzed transesterification of **3a**. Since CO_2 expanded MeTHF was reported to be best among the biobased solvents tested for the transesterification of 1-adamantylethanol by CAL-B (γ -valerolactone, diethyl carbonate, MeTHF, 2-methylfuran, *p*-cymene, (+)-limonene and (-)-limonene) [32], conventional

Fig. 2. CAL-B-catalyzed transesterification of ortho-substituted 1-phenylethanol analogs (1a-7a) in CO2-expanded liquids [34,36-38].

Table 1

Substrate			Solvent	Product	Conv. ^a (%)	<i>ee</i> _p (%)
R OH	R = F	1a	MeTHF	1b	2.0	N.d.
L ŝ			CO ₂ -expanded MeTHF		24	>99
	Cl	2a	MeTHF	2b	<1	N.d.
Į į			CO ₂ -expanded MeTHF		11	>99
\sim	Br	3a	MeTHF	3b	<1 ^b	N.d.
			CO ₂ -expanded MeTHF		5.6 ^b	>99
	CH_3	4a	MeTHF	4b	<1	N.d.
			CO ₂ -expanded MeTHF		9.1	>99
	OCH ₃	5a	MeTHF	5b	1.2	N.d.
			CO ₂ -expanded MeTHF		18	>99
	CF ₃	6a	MeTHF	6b	<1	N.d.
			CO ₂ -expanded MeTHF		<1	N.d.
CI	ОН	7a	MeTHF	7b	<1	N.d.
F	<u> </u>		CO ₂ -expanded MeTHF		<1	N.d.
	`CI					

Comparison of (CAL_R_catalyze	d transectorification of	ortho_substituted 1	 al analogs in MeTH	E and in COsper	manded MeTHE
CUMParison OI V	CAL-D-Caldiy2C	u transesternication or	ortho-substituted i	JI diidiogs iii ivie i fi	Γ and Π CO_2 -cx	panueu mernir.

Reaction conditions: **1a-7a** (0.10 mmol), vinyl acetate (0.20 mmol), Novozym 435[®] (10 mg), MeTHF (10 mL) or CO₂-expanded MeTHF (10 mL, MeTHF concentration 5% v/v, 6.0 MPa), 50 °C, 0.50 h. N.d.: not determined due to low conversions observed. *ee*_p: Enantiomeric excess of the product.

^a The reactions were stopped at low conversion to show differences between the two media.

^b Similar results shown in Fig. 1 were reported using different conditions [33].

solvents were also investigated in this study. Generally, hydrophobic solvents have been reported to be suitable for lipase-catalyzed transesterification [43,44]. For example, hexane was reported to be best among the solvents tested for the transesterification of 1-phenylethanol by CAL-B (vinyl acetate, THF, diisopropyl ether, chloroform, toluene, hexane, and isooctane) [45]. Based on these reports, p-cymene, hexane, THF, and vinyl acetate were chosen for the investigation for CAL-B-catalyzed transesterification of 3a at 50 °C. As shown in Table S3, CO₂ expanded hexane gave the best result, followed by CO₂ expanded *p*-cymene. When the reactions in solvents without expansion by CO₂ were compared, hexane also gave the best result, followed by p-cymene. The preliminary experiment using MeTHF, hexane, p-cymene, diethyl carbonate, and cyclopentyl methyl ether (CPME) at 20 °C also resulted in hexane being the best. The hydrophobicity of hexane, as well as *p*-cymene, is considered to be suitable for the reaction, and CO₂ may exert the additional positive effect.

Then, a conventional excellent solvent for CAL-B-catalyzed reaction, hexane, was used instead of MeTHF for the transesterification of **1a-7a** at 50 °C. The results are shown in Table 2. The reactions in CO₂-expanded hexane gave better conversions than those in neat hexane for all substrates tested. The conversions in neat hexane and CO₂-expanded hexane were also higher than those in neat MeTHF and CO₂-expanded MeTHF (Table 1), respectively. It is probably due to the high hydrophilicity of MeTHF as reported in other lipase-catalyzed reactions [44]. For **1a-3a**, as the steric hindrance of substituents are larger, the acceleration effects were more profound. Importantly, the enantioselectivities of reactions were excellent for all of the reactions proceeded except for **6a**.

The effect of temperature on CAL-B-catalyzed transesterification of **3a** in CO₂-expanded hexane was investigated. As shown in Fig. 3, the conversion increased from 20 °C to 50 °C, and the highest conversion was observed at 50 °C (23%), which is in agreement with the reported optimum temperature of CAL-B-catalyzed

Table 2

Comparison of CAL-B-catalyzed transesterification of ortho-substituted 1-phenylethanol analogs in hexane and in CO2-expanded hexane.

Substrate			Solvent	Product	Conv. ^a (%)	<i>ee</i> _p (%)	
	R = F	1a	Hexane	1b	30	>99	
			CO ₂ -expanded hexane		46	>99	
	Cl	2a	Hexane	2b	16	>99	
			CO ₂ -expanded hexane		30	>99	
	Br	3a	Hexane	3b	9.0	>99	
			CO ₂ -expanded hexane		23	>99	
	CH ₃	4a	Hexane	4b	11	>99	
			CO ₂ -expanded hexane		27	98	
\checkmark	OCH ₃	5a	Hexane	5b	29	>99	
			CO ₂ -expanded hexane		42	>99	
	CF ₃	6a	Hexane	6b	<1	N.d.	
			CO ₂ -expanded hexane		1.2	N.d.	
	CF ₃	6a	Hexane	6b	13 ^b	58	
			CO ₂ -expanded hexane		41 ^b	58	
CI OH		7a	Hexane	7b	<1	N.d.	
			CO ₂ -expanded hexane		<1	N.d.	
		7a	Hexane	7b	<1 ^b	N.d.	
CI			CO ₂ -expanded hexane		2.0 ^b	N.d.	

Reaction conditions: **1a-7a** (0.10 mmol), vinyl acetate (0.20 mmol), Novozym 435[®] (10 mg), hexane (10 mL) or CO₂-expanded hexane (10 mL, hexane concentration 5% v/v, 6.0 MPa), 50 °C, 0.50 h. *ee*_p: Enantiomeric excess of the product.

^a The reactions were stopped at low conversion to show differences between the two media.

^b 24 h.

Fig. 3. Effect of temperature on CAL-B-catalyzed transesterification of 1-(2'bromophenyl)ethanol **3a** in CO₂-expanded hexane. Reaction conditions: **3a** (0.10 mmol), vinyl acetate (0.20 mmol), Novozym 435[®] (10 mg), CO₂-expanded hexane (10 mL, hexane concentration 5% v/v, 6.0 MPa), 0.50 h. Enantiomeric excess of the product ee_p > 99% (R) under all temperatures examined.

transesterification [46–48]. The enantioselectivities of reactions were excellent ($ee_p > 99\%$ (*R*)), regardless of the reaction temperature.

CAL-B-catalyzed transesterification of **1a-7a** was also investigated using liquid CO₂ as a solvent at 20 °C. The reaction temperature using liquid CO₂ can be set only below the critical temperature of CO₂ (31.1 °C) [24]. As shown in Table S2, the reactions in liquid CO₂ at 20 °C gave lower conversions than those in CO₂-expanded hexane at 50 °C due to the difference in reaction temperature. However, the reactions of **2a-5a** in liquid CO₂ at 20 °C gave higher conversions than those in hexane at 20 °C. Therefore, the presence of a large concentration of CO₂ in the solvent is important for the CAL-B-catalyzed transesterification.

The CAL-B activity toward *ortho*-substituted 1-phenylethanol analogs, which was low in neat organic solvents, was enhanced in both CO_2 -expanded liquids tested (MeTHF and hexane). The mechanism of the CO_2 induced acceleration can be hypothesized that CO_2 induces enhanced transport properties [25–27] and improved flexibility of enzymes [49–52]. Particularly, the solvent-exposed residues α 5, the pseudo-lid covering the entrance of the active site, has high fluctuations in CO_2 and thus allows the lipase more tolerant to sterically hindered substrates with *ortho*-substitutions [49–52]. Additionally, a plausible reason for the difference in the degree of acceleration between the two solvents, of which more drastic are found for MeTHF than for hexane, is that CO_2 increases the hydrophobicity of MeTHF, whereas neat hexane is hydrophobic, so that the hydrophobicity of hexane does not change significantly by the expansion with CO_2 .

Conclusion

CO₂-expanded liquids were proven to be promising alternative solvents for CAL-B-catalyzed transesterification of sterically hindered *ortho*-substituted 1-phenylethanol analogs. This research will lead to the further development of biocatalysis in CO₂expanded liquids using different kinds of substrates and/or enzymes in the future, especially to diminish the detrimental effect of the *ortho* substituents.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgement

This work was supported by the JSPS KAKENHI Grant Number JP19K05560.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.tetlet.2020.152424.

References

- R.A. Sheldon, D. Brady, Broadening the scope of biocatalysis in sustainable organic synthesis, ChemSusChem 12 (13) (2019) 2859–2881.
- [2] J.P. Adams, M.J.B. Brown, A. Diaz-Rodriguez, R.C. Lloyd, G.D. Roiban, Biocatalysis: a pharma perspective, Adv. Synth. Catal. 361 (11) (2019) 2421– 2432.
- [3] N.L.D. Nyari, G.L. Zabot, R. Zamadei, A.R. Paluzzi, M.V. Tres, J. Zeni, L.D. Venquiaruto, R.M. Dallago, Activation of Candida Antarctica Lipase B in pressurized fluids for the synthesis of esters, J. Chem. Technol. Biotechnol. 93 (3) (2018) 897–908.
- [4] A. Park, S. Kim, J. Park, S. Joe, B. Min, J. Oh, J. Song, S. Park, S. Park, H. Lee, Structural and experimental evidence for the enantiomeric recognition toward a bulky sec-alcohol by Candida Antarctica Lipase B, ACS Catal. 6 (11) (2016) 7458–7465.
- [5] Y. L. de los Santos, Y.L. Chew-Fajardo, G. Brault, N. Doucet, Dissecting the evolvability landscape of the CalB active site toward aromatic substrates, Sci. Rep. 9 (1) (2019) 1–14.
- [6] H. Chen, X. Meng, X. Xu, W. Liu, S. Li, The molecular basis for lipase stereoselectivity, Appl. Microbiol. Biotechnol. 102 (8) (2018) 3487–3495.
- [7] M. Päiviö, D. Mavrynsky, R. Leino, L.T. Kanerva, Dynamic kinetic resolution of a wide range of secondary alcohols: cooperation of dicarbonylchlorido (pentabenzylcyclopentadienyl)ruthenium and CAL-B, Eur. J. Org. Chem. 8 (2011) 1452–1457.
- [8] K. Nakamura, M. Kawasaki, A. Ohno, Lipase-catalyzed transesterification of aryl-substituted alkanols in an organic solvent, Bull. Chem. Soc. Jpn. 69 (4) (1996) 1079–1085.
- [9] K. Yasukawa, F. Motojima, A. Ono, Y. Asano, Expansion of the substrate specificity of porcine kidney D-amino acid oxidase for S-stereoselective oxidation of 4-Cl-benzhydrylamine, ChemCatChem 10 (16) (2018) 3500–3505.
- [10] H. Yamaguchi, M. Tatsumi, K. Takahashi, U. Tagami, M. Sugiki, T. Kashiwagi, M. Kameya, S. Okazaki, T. Mizukoshi, Y. Asano, Protein engineering for improving the thermostability of tryptophan oxidase and insights from structural analysis, J. Biochem. 164 (5) (2018) 359–367.
- [11] T. Ema, H. Inoue, Chemical modification of lipase for rational enhancement of enantioselectivity, Chem. Lett. 44 (10) (2015) 1374–1376.
- [12] B.J. Jones, H.Y. Lim, J. Huang, R.J. Kazlauskas, Comparison of five protein engineering strategies for stabilizing an α/β-hydrolase, Biochemistry 56 (50) (2017) 6521–6532.
- [13] A.A. Koesoema, Y. Sugiyama, K.T. Sriwong, Z. Xu, S. Verina, D.M. Standley, M. Senda, T. Senda, T. Matsuda, Reversible control of enantioselectivity by the length of ketone substituent in biocatalytic reduction, Appl. Microbiol. Biotechnol. 103 (23–24) (2019) 9529–9541.
- [14] A.A. Koesoema, D.M. Standley, T.K. Sriwong, M. Tamura, T. Matsuda, Access to both enantiomers of substituted 2-tetralol analogs by a highly enantioselective reductase, Tetrahedron Lett. 61 (13) (2020) 151682.
- [15] A.A. Koesoema, D.M. Standley, S. Ohshima, M. Tamura, T. Matsuda, Control of enantioselectivity in the enzymatic reduction of halogenated acetophenone analogs by substituent positions and sizes, Tetrahedron Lett. 61 (18) (2020) 151820.
- [16] C. Cao, T. Matsuda, Biocatalysis in organic solvents, supercritical fluids and ionic liquids, in: Organic Synthesis Using Biocatalysis, Elsevier, 2016, pp. 67– 97.
- [17] A. Hinzmann, N. Adebar, T. Betke, M. Leppin, H. Gröger, Biotransformations in pure organic medium: organic solvent-labile enzymes in the batch and flow synthesis of nitriles, Eur. J. Org. Chem. 2019 (41) (2019) 6911–6916.
- [18] R.K. Henderson, C. Jiménez-González, D.J.C. Constable, S.R. Alston, G.G.A. Inglis, G. Fisher, J. Sherwood, S.P. Binks, A.D. Curzons, Expanding GSK's solvent selection guide – embedding sustainability into solvent selection starting at medicinal chemistry, Green Chem. 13 (4) (2011) 854.
- [19] P.T. Anastas, M.M. Kirchhoff, Origins, current status, and future challenges of green chemistry, Acc. Chem. Res. 35 (9) (2002) 686–694.
- [20] P. Tundo, P. Anastas, D.S. Black, J. Breen, T.J. Collins, S. Memoli, J. Miyamoto, M. Polyakoff, W. Tumas, Synthetic pathways and processes in green chemistry. Introductory overview, Pure Appl. Chem. 72 (7) (2000) 1207–1228.
- [21] J.M. DeSimone, Practical approaches to green solvents, Science 297 (5582) (2002) 799–803.
- [22] D. Prat, A. Wells, J. Hayler, H. Sneddon, C.R. McElroy, S. Abou-Shehada, P.J. Dunn, CHEM21 selection guide of classical- and less classical-solvents, Green Chem. 18 (1) (2016) 288–296.

M. Otsu et al.

- [23] X. Han, M. Poliakoff, Continuous reactions in supercritical carbon dioxide: problems, solutions and possible ways forward, Chem. Soc. Rev. (2012) 1428– 1436.
- [24] H.N. Hoang, T. Matsuda, Biotransformation using liquid and supercritical CO2, in: Tomoko Matsuda (Ed.), Future Directions in Biocatalysis, Elsevier, 2017, pp. 3–25.
- [25] G.R. Akien, M. Poliakoff, A critical look at reactions in class I and II gasexpanded liquids using CO2 and other gases, Green Chem. 11 (8) (2009) 1083– 1100.
- [26] P.G. Jessop, B. Subramaniam, Gas-expanded liquids, Chem. Rev. 107 (6) (2007) 2666–2694.
- [27] H.N. Hoang, K.R.A. Are, T. Matsuda, CHAPTER 7. Biocatalysis in supercritical and liquid carbon dioxide and carbon dioxide-expanded liquids, in: A.J. Hunt, T.M. Attard (Eds.), Supercritical and Other High-pressure Solvent Systems: For Extraction, Reaction and Material Processing, The Royal Society of Chemistry, London, 2018, pp. 191–220, Green Chemistry Series.
- [28] V. Pace, P. Hoyos, L. Castoldi, P. Domínguez de María, A.R. Alcántara, 2-Methyltetrahydrofuran (2-MeTHF): a biomass-derived solvent with broad application in organic chemistry, ChemSusChem 5 (8) (2012) 1369–1379.
- [29] J.H. Clark, T.J. Farmer, A.J. Hunt, J. Sherwood, Opportunities for bio-based solvents created as petrochemical and fuel products transition towards renewable resources, Int. J. Mol. Sci (2015) 17101–17159.
- [30] Y. Gu, F. Jérôme, Bio-based solvents: an emerging generation of fluids for the design of eco-efficient processes in catalysis and organic chemistry, Chem. Soc. Rev. (2013) 9550–9570.
- [31] Z.-G. Chen, D.-N. Zhang, L. Cao, Y.-B. Han, Highly efficient and regioselective acylation of pharmacologically interesting cordycepin catalyzed by lipase in the eco-friendly solvent 2-methyltetrahydrofuran, Bioresour. Technol. 133 (2013) 82–86.
- [32] H.N. Hoang, Y. Nagashima, S. Mori, H. Kagechika, T. Matsuda, CO2-expanded bio-based liquids as novel solvents for enantioselective biocatalysis, Tetrahedron 73 (20) (2017) 2984–2989.
- [33] H.N. Hoang, E. Granero-Fernandez, S. Yamada, S. Mori, H. Kagechika, Y. Medina-Gonzalez, T. Matsuda, Modulating biocatalytic activity toward sterically bulky substrates in CO2-Expanded biobased liquids by tuning the physicochemical properties, ACS Sustain. Chem. Eng. 5 (11) (2017) 11051–11059.
- [34] B.H. Hoff, E. Sundby, Preparation of pharmaceutical important fluorinated 1arylethanols using isolated enzymes, Bioorg. Chem. 51 (2013) 31–47.
- [35] M.L. Contente, I. Serra, L. Palazzolo, C. Parravicini, E. Gianazza, I. Eberini, A. Pinto, B. Guidi, F. Molinari, D. Romano, Enzymatic reduction of acetophenone derivatives with a benzil reductase from Pichia Glucozyma (KRED1-Pglu): electronic and steric effects on activity and enantioselectivity, Org. Biomol. Chem. 14 (13) (2016) 3404–3408.
- [36] S. Solanki, P. Innocenti, C. Mas-Droux, K. Boxall, C. Barillari, R.L.M. Van Montfort, G.W. Aherne, R. Bayliss, S. Hoelder, Benzimidazole inhibitors induce a DFG-out conformation of never in mitosis gene a-related Kinase 2 (Nek2) without binding to the back pocket and reveal a nonlinear structure-activity relationship, J. Med. Chem. 54 (6) (2011) 1626–1639.
- [37] H. Nishii, T. Chiba, K. Morikami, T.A. Fukami, H. Sakamoto, K. Ko, H. Koyano, Discovery of 6-benzyloxyquinolines as c-Met selective kinase inhibitors, Bioorg. Med. Chem. Lett. 20 (4) (2010) 1405–1409.

- [38] P.D. de Koning, D. McAndrew, R. Moore, I.B. Moses, D.C. Boyles, K. Kissick, C.L. Stanchina, T. Cuthbertson, A. Kamatani, L. Rahman, et al., Fit-for-purpose development of the enabling route to Crizotinib (PF-02341066), Org. Process Res. Dev. 15 (5) (2011) 1018–1026.
- [39] G. Zheng, X. Liu, Z. Zhang, P. Tian, G. Lin, J. Xu, Separation of enantiopure Msubstituted 1-phenylethanols in high space-time yield using bacillus subtilis esterase, RSC Adv. 3 (43) (2013) 20446.
- [40] T. Hoshino, E. Yamabe, M.A. Hawari, M. Tamura, S. Kanamaru, K. Yoshida, A.A. Koesoema, T. Matsuda, Oxidation of aromatic and aliphatic aldehydes to carboxylic acids by *Geotrichum candidum* aldehyde dehydrogenase, Tetrahedron 76 (33) (2020) 131387.
- [41] T. Knaus, V. Tseliou, L.D. Humphreys, N.S. Scrutton, F.G. Mutti, A biocatalytic method for the chemoselective aerobic oxidation of aldehydes to carboxylic acids, Green Chem. 20 (17) (2018) 3931–3943.
- [42] T. Matsuda, K. Tsuji, T. Kamitanaka, T. Harada, K. Nakamura, T. Ikariya, Rate enhancement of lipase-catalyzed reaction in supercritical carbon dioxide, Chem. Lett. 34 (8) (2005) 1102–1103.
- [43] L.F. García-Alles, V. Gotor, Lipase-catalyzed transesterification in organic media: solvent effects on equilibrium and individual rate constants, Biotechnol. Bioeng. 59 (6) (1998) 684–694.
- [44] A. lemhoff, J. Sherwood, C.R. McElroy, A.J. Hunt, Towards sustainable kinetic resolution, a combination of bio-catalysis, flow chemistry and bio-based solvents, Green Chem. 20 (1) (2018) 136–140.
- [45] H.N. Hoang, T. Matsuda, Liquid carbon dioxide as an effective solvent for immobilized Candida Antarctica Lipase B catalyzed transesterification, Tetrahedron Lett. 56 (4) (2015) 639–641.
- [46] N.M. Hadzir, M. Basri, M.B.A. Rahman, C.N.A. Razak, R.N.Z.A. Rahman, A.B. Salleh, Enzymatic alcoholysis of triolein to produce wax ester, J. Chem. Technol. Biotechnol. 76 (5) (2001) 511–515.
- [47] G.D. Yadav, P.S. Lathi, Kinetics and mechanism of synthesis of butyl isobutyrate over immobilised lipases, Biochem. Eng. J. 16 (3) (2003) 245– 252.
- [48] B.M. Lue, S. Karboune, F.K. Yeboah, S. Kermasha, Lipase-catalyzed esterification of cinnamic acid and oleyl alcohol in organic solvent media, J. Chem. Technol. Biotechnol. 80 (4) (2005) 462–468.
- [49] M.J. Hernáiz, A.R. Alcántara, J.I. García, J.V. Sinisterra, Applied biotransformations in green solvents, Chem. - A Eur. J. 16 (31) (2010) 9422– 9437.
- [50] H. Monhemi, M.R. Housaindokht, How enzymes can remain active and stable in a compressed gas? New insights into the conformational stability of Candida Antarctica Lipase B in near-critical propane, J. Supercrit. Fluids 72 (2012) 161–167.
- [51] H. Monhemi, M.R. Housaindokht, Chemical modification of biocatalyst for function in supercritical CO2. In silico redesign of stable lipase, J. Supercrit. Fluids 117 (2016) 147–163.
- [52] H. Monhemi, M.R. Housaindokht, The molecular mechanism of protein denaturation in supercritical CO₂: the role of exposed lysine residues is explored, J. Supercrit. Fluids 147 (2019) 222–230.