1 ABLE 1 REACTANTS, PROPERTIES AND ANALYSES OF THE ADDITION COMPOUNDS

		and		Designation		- A	V	nalyses (M. and	H. = analy	zed by Mes	Analyses (M. and H. = analyzed by Meyer and Hantzsch)	tzsch)	
		to one of	Solvent (and	Color and crystal	S X	rormuz P =	Mets		ncares :	atoune rano Chlor	ine. %	70 anaiysis		
No.	Phthalein	phthalein			C.	phthalein	Calcd.	ed. Found	þ	Calcd.	Found	Cal		Found
~		1 SnCl	Nitrobz. (CS2)	Red	78-79	P-SnCh-BzNO2				M. and H.				
8	Phenol	1 SnCh	Anisole (CCI4)	Pale red		P-SnCl ₁ -BzOMe	Sn, 17.28 17.36	17.36				OCH3, 4.52	4.52	4.28
m		1 SnCl4	Benzonitrile (CCl4)	Pale red		P-SnCl ₄ -BzCN	Sn, 0.83*	0.77*		1.00*	1.00*	N, 0.10*	*	0.11*
*	Phenol	1 SnCl	Nitrobz. (CS2)	Red	128	P-SnCl,			· •	M. and H				
rð	dimethyl	1 SnCh	Nitrobz. (CS2)	Pink		2P-SnCl,	Sn, 12.46 11.67	11.67		14.89	15.18			
9	ether ^a (2 SbCls	, 100	Carmine		P-SbCl _k	Sp, 0.69*	*69.0		1.00*	1.00*	OCH ₃ , 0.35*		0.33*
~		1 SnCl4	CCI	Vellow		P-SnCh	Sn, 20.16	21.35 2	21.28	24.10	24.39 24.01	01		
œ		1 SnCl	Anisole	Red rhombic and prism		P-SnCl ₄ ·BzOMe	Sn, 17.03	17.88 1	17.59 2	20.36	20.50 20.30	30 Anisole, 15.51		15.24
6	3,6-Dimethyl-	20 SnC1,	Anisole	Irregular lamina	139, dec.	2P-3SnCl ₄ ·2BzOMe Sn, 21.53		22.53 2	23.51 2	25.73	25.17	Anisole, 13.07		14.50
2	fluoran	1 SbCl	, (CC)	Veilow	203	P-SbCl	Sb, 19.42	19.80	~1	28.27	29.32			
Ξ		2 SbCla	СН,СООН	Oryel. needles recryst. : from Me ₂ CO or CHCl ₃	203	P-SbCh-HCl-AcH	Sb, 16.82	17.27	17.02 2	29.42	29.43 29.	29.37 Ac, 5.95		5.95
13		∫ 0.5 SnCl	0.5 SnCl, Nitrobz. (CCl,	Yelbrown		2P-SnCk	Sn, 12.84 12.27	12.27	11.96 15.34	15.34	16.58			
12a	Fluorescein	1 SnCl	Nitrobz. (CCl4)	Yelbrown		2P-SnCh	Sn, 12.84	11.75	1	15.34	16.33			
13	13 Fluorescein di- ∫ 0.5 SnCl, CCl,	∫ 0.5 SnCh	100	Vellow		P-SnCl	Sn, 19.13	18.95		22.86	23.61			
13a	methyl ether (1 SnCl	1 SnCh	CCI	Yellow		P-SnCl,	Sn. 19.13	19.24		22.86				
•	E. Grande, Gaz	z. chim. ital	• E. Grande, Gazz. chim. ital., 26, I, 222 (1896);	R. Meyer and O. Spengler, Ber., 38, 1328 (1905). b F. Kehrmann and J. Knop, ibid., 44, 3510 (1911). c H. v. Liebig,	igler, Ber.	., 38, 1328 (1905).	^b F. Kehr	mann ar	ld J. K	Znop, ibid.,	, 44, 3510	(1911).	" H. v. L.	iebig,
1	1 Send Chem 88 26 (1913)	3. 26 (1913)												

of the acid, HSbCl₆, all the compounds listed are included in four different classes: (A) SnCl₄·2P, substances (5), (12); (B) SnCl₄·P, substances (4), (7), (13); (C) SnCl₄·P·Solvent, substances (1), (2), (3), (8); (D) SbCl₅·P, substances (6), (10).

The chemical nature of the classes A, C and D seems to be clear. They are complex compounds of coördinated hexavalent tin or antimony, one molecule of the phthalein occupying a single coördination valence. The substances of class B may be interpreted by the hypothesis that the phthalein occupies two coördinated valences or they may be considered as bimolecular compounds with two coördination centers. They are mostly less deeply colored and are mainly formed if solvents lacking secondary valences are used. Glasgow, Scotland Received September 22, 1939

The Condensation of Phenol and Ethylene Oxide

By RICHARD A. SMITH

The monophenyl ether of ethylene glycol was first prepared by the reaction between phenol and ethylene oxide in a sealed tube. In this way, by heating at 180° for eight hours, we obtained an 85% yield based on the phenol.

More frequently, however, it has been prepared by the reaction of ethylene chlorohydrin with a phenol salt.² We find that using this latter method and refluxing the mixture for eight hours gives, after distillation through a 6-foot column and collection within 0.5°, 1.10 moles of phenoxy glycol (b. p. 165° at 80 mm.), or a 55% yield, from 2 moles of phenol. This same reaction, carried on in a sealed tube for eight hours, gives a 62.5% yield of the same purity.

We now find that by heating, without rocking, molar equivalents of phenol and ethylene oxide in an autoclave charged with hydrogen at tank pressure for four hours until the temperature reaches 200°, the pressure at that time being in excess of 2500 pounds per sq. in., and then allowing it to cool and redistilling the product in a vacuum, a yield of 94% of phenoxy glycol of the same purity is obtained.

Washington Square College New York University Washington Square, New York City Received November 24, 1939

Roithner, Monatsh., 75, 674 (1894).
 Bentley, Haworth and Perkin, J. Chem. Soc., 69, 164 (1896);
 Smith and Niederl, THIS JOURNAL, 53, 808 (1931);
 Bellman, U. S. P. 1,841,431 (1932).