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Abstract: The simple preparative method for
a novel palladium supported on boron nitride cata-
lyst (Pd/BN) was accomplished. Pd/BN is widely ap-
plicable for the semihydrogenation of mono- as
well as disubstituted alkynes to furnish the corre-
sponding alkenes in the presence of diethylenetri-ACHTUNGTRENNUNGamine (DETA), which exhibits both an unprece-
dented acceleration effect toward the semihydroge-
nation and a suppression effect with regard to the
overhydrogenation to alkanes.

Keywords: alkynes; boron nitride; diethylenetri-ACHTUNGTRENNUNGamine (DETA); heterogeneous catalysis; Pd/BN
catalyst; semihydrogenation

The semihydrogenation of alkynes[1] is a useful syn-
thetic method for alkenes and only a few methods
using homogeneous[2–8] and heterogeneous[9–28] cata-
lysts have been reported in the literature. However,
an elaborate experimental set-up and strict monitor-
ing of the reaction process are still required to pre-
vent overreduction to alkanes. Especially, the semihy-
drogenation of monosubstituted alkynes to the corre-
sponding monosubstituted alkenes[3,19–22] is an ex-
tremely difficult and challenging reaction in connec-
tion with the significant synthesis of the synthons of
the functional polymers, total syntheses and so
on.[15,23–27] Meanwhile, heterogeneous Pd catalysts are
practical and appropriate in terms of green chemistry
due to their stability under atmospheric conditions,
easily separable property without Pd leaching, re-
usablity and so on. Although Lindlar�s catalyst [Pd/
CaCO3 poisoned by Pb ACHTUNGTRENNUNG(OAc)2 and quinoline][9] is
most frequently utilized as a heterogeneous semihy-
drogenation catalyst, it possesses some disadvantages
such as the use of toxic Pb ACHTUNGTRENNUNG(OAc)2 during the catalyst
preparation and it cannot be used for the semihydro-

genetion of monosubstituted alkynes. We now report
an efficient semihydrogenation method for mono- as
well as disubstituted alkynes using an easily prepared
and environmental friendly novel heterogeneous Pd
catalyst.

We have recently developed useful heterogeneous
catalysts {e.g., Pd/C-ethylenediamine complex [Pd/
C(en)],[29] Pd-polyethyleneimine complex (Pd/PEI),[30]

Pd/C-diphenyl sulfide complex [Pd/C ACHTUNGTRENNUNG(Ph2S)],[31] Pd-fi-
broin complex [Pd/Fib][32] and Pd-molecular sieves
complex (Pd/MS3 �)[33]} possessing specific character-
istics and suppressed catalytic activities to enable the
chemoselective hydrogenation among various reduci-
ble functionalities such as N-Cbz, benzyl ether, aro-
matic ketone, nitro, alkyne, alkene, azido and so on.
Our suppression methodologies for the Pd catalyst�s
activity are classified into two categories: (i) suppres-
sion by the coordination-induced catalyst poisoning
effect using the lone pairs of amines or sulfides,[34]

such as Pd/C(en), Pd/PEI[35] and Pd/C ACHTUNGTRENNUNG(Ph2S), (ii) sup-
pression due to the catalyst supports utilizing their
characteristic properties as a material, such as Pd/Fib
and Pd/MS3 �.

We have focused on boron nitride (BN) as a catalyst
support. BN is a benign powder possessing a hexago-
nally-shaped crystal structure composed of continuous
boron-nitrogen bonds (Figure 1), and the numerous
lone pairs on the nitrogen atoms were expected to co-
ordinate with the Pd metal and suppress the catalyst
activity for hydrogenation. Pd on BN (Pd/BN) could
be easily prepared by just stirring the colorless BN in
a rust-colored MeOH solution of Pd ACHTUNGTRENNUNG(OAc)2 [0.5 wt%
of Pd metal vs. BN was used as Pd ACHTUNGTRENNUNG(OAc)2,
Scheme 1].[32,33] After stirring at room temperature for
5 days, reduced Pd(0) was supported on BN to give
0.3 wt% Pd/BN[36,37] as a grey powder. STEM analysis
showed that the Pd metal was agglutinated to form
ca. 10 nm size particles with a high dispersivity on BN
regardless of the quite small specific surface area of
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BN (5 m2 g�1, the general specific surface area of Pd/C
is ca. 850 m2 g�1, Figure 2).

Pd/BN possesses a reasonably lower catalyst activi-
ty due to a cluster formation of the Pd metal. Alkyne
and alkene functionalities could be selectively hydro-
genated in MeOH under an H2 atmosphere at 25 8C
in the presence of ketone, aryl halide, nitro, N-Cbz,
benzyl ester and benzyl ether functionalities
(Table 1). Meanwhile, the reduction control (semihy-
drogenation) between the alkyne and alkene function-
alities could not be accomplished by the independent
application of Pd/BN (Table 1, entries 1–3; Table 2,
entry 1).

Amines are generally known to suppress the cata-
lyst activity of supported platinum group metal cata-
lysts due to the metal coordination effect. Therefore,
ethylenediamine constructing a rigid five-membered
cyclic coordination complex with metals was utilized
as an efficient additive to control the semihydrogena-

tion of alkynes in the literature.[10j,k,17b] On the other
hand, we recently found that Et3N possessing a rela-
tively weak coordination property to platinum metals
accelerated the Pd/C-catalyzed hydrogenation of al-
kenes[38] and chloroarenes.[39] We particularly investi-
gated the addition effect of amines to achieve the

Figure 1. Structure of boron nitride (BN).

Scheme 1. Preparation of our Pd/BN catalyst.

Figure 2. STEM of 0.3% Pd/BN catalyst.

Table 1. Pd/BN catalyzed the chemoselective hydrogenation in
MeOH.

Entry Substrate Product Time
[h]

Yield
[%]

1 – 6 N.R.[a]

2 – 6 N.R.[a]

3 6 100

4 6 97

5 3 99

[a] N.R.= no reaction.

Table 2. Effect of amines on the semihydrogenation.

Entry Amine Ratio[a] 1a :2a :3a

1[b] None 0:0:100
2 35:65:0
3 Et3N 0:0:100
4 NH3 0:100:0
5 0:100:0

6 0:100 (99)[c]:0

[a] The ratio was determined by 1H NMR and GC/MS.
[b] Ratio of 1a :2a :3a was 68:32:0 (at 30 min), 35:65:trace (at

1 h) and 0:89:11 (at 2 h).
[c] Isolated yield [%].
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moderate depression toward the Pd/BN-catalyzed
semihydrogenation of alkynes by comparison of the
products ratio after the 6 h reaction (Table 2) and the
time-course study based on the generated alkene
ratio (Figure 3) using 4-methoxyethynylbenzene (1a)
as a substrate.

Although the reaction with ethylenediamine could
afford only alkenes without overreduction to the
alkane (3a), 35% of the substrate (1a) still remained
unchanged after a 6 h reaction [Table 2, entry 2;
Figure 3 (^)]. While Et3N was found to rather accel-
erate the semihydrogenation to form 2a, the overre-
duction of 2a to 3a also smoothly proceeded and only
3a was obtained after 6 h [Table 2, entry 3; Figure 3
(�)]. NH3 [Table 2, entry 4; Figure 3 (~)], 1,3-pro-
panediamine [Table 2, entry 5; Figure 3 (�)] and di-
ethylenetriamine (DETA) [Table 2, entry 6; Figure 3
(&)] successfully suppressed the overreduction to pro-
duce 2a as the sole product, and NH3 and DETA ef-
fectively accelerated the semihydrogenation to the
alkene (2a) and completely suppressed the overreduc-
tion to the alkane (3a). DETA was chosen as the
most efficient additive because the Pd/BN-catalyzed
semihydrogenation was more smoothly completed
within 1 h (see Figure 3) and no overhydrogenated
product (3a) was produced even after 6 h reaction.[40]

The Pd/BN-DETA combination is widely applica-
ble for the selective semihydrogenation of various
monosubstituted alkynes (Table 3). Not only arylalk-ACHTUNGTRENNUNGynes (entries 1–5) but also aliphatic alkynes (en-
tries 6–13) could also be transformed into the corre-
sponding alkenes in nearly quantitative isolated yields
with quite high selectivities. It is noteworthy that the
present reaction was adaptable to the semihydrogena-
tion of substrates bearing unprotected amine (entry 3)

and hydroxy groups (entries 9 and 13); also TBS
ether (entries 7 and 10), benzyl ether (entry 8), N-Cbz
(entry 4) and nitro (entry 5) groups were tolerated
under the hydrogenation conditions. Various disubsti-
tuted alkynes were also semihydrogenated to the cor-
responding cis-alkenes in high yields and selectivities

Figure 3. Time-course study of the semihydrogenation in the
presence of amines.

Table 3. Scope and limitation of semihydrogenation of alk-ACHTUNGTRENNUNGynes in the presence of DETA.

Entry Product Ratio 1:2 :3 X Yield [%]

1 0:95:5 1.0 –

2 0:100:0 1.0 99

3 0:98:2 2.0 90

4 0:100:0 1.3 96

5 5:95:0 1.0 95

6 0:98:2 1.2 97

7 0:99:1 1.1 96
8 0:100:0 1.0 96

9 0:95:5 1.5 95

10 0:100:0 0.5 97[a]

11 0:99:1 0.1 90[b]

12 0:98:2 1.5 88

13 0:100:0 0.8 99

14 0:100:0 1.0 98

15 2:92:6 1.0 92

16 4:94:2 1.0 90[a]

[a] At 50 8C.
[b] THF was used instead of MeOH to prevent the ester ex-

change.
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(entries 14–16). The formation of the corresponding
trans-isomer was never observed under these reaction
conditions.

Pd/BN could be easily recovered merely by simple
filtration and rinsing with MeOH and water. The re-
covered Pd/BN catalyst was found to retain its cata-
lyst activity and could be reused for at least three
times (Table 4).[41]

In summary, we have developed a simple prepara-
tive method for Pd/BN, a chemoselective hydrogena-
tion catalyst. Pd/BN is widely applicable for the selec-
tive semihydrogenation of mono- as well as disubsti-
tuted alkynes to the corresponding alkenes in the
presence of DETA. Furthermore, we have shown that
DETA exhibits both an unprecedented acceleration
effect during the semihydrogenation of alkynes to al-
kenes and a suppression effect with regard to the
overhydrogenation to alkanes. The present environ-
mentally friendly method is useful in laboratory and
industry scale reactions. The simplicity of this method
and the reusability of Pd/BN make them attractive
new tools for organic and process chemists.

Experimental Section

Preparatation of Pd/BN Catalyst

To a solution of PdACHTUNGTRENNUNG(OAc)2 (28.1 mg, including 13.3 mg of Pd
metal; 0.5 wt% Pd metal vs. BN) in MeOH (50 mL) was
added boron nitride (BN) (2.66 g), and the suspension was
stirred at room temperature for 5 days. The resulting sus-
pension was filtered and the obtained solid was washed with
MeOH and H2O, then dried under reduced pressure to give
the 0.3% Pd/BN catalyst as a grey powder; yield: 2.6 g.

Typical Procedure for the Chemoselective
Hydrogenation (Table 1)

A mixture of a substrate (0.25 mmol), 0.3% Pd/BN
(0.03 mol% of the substrate, 2.7 mg) in MeOH (1 mL) was

stirred under an ordinary (balloon) hydrogen pressure at
25 8C. The resulting mixture was diluted with Et2O and fil-
tered through a membrane filter (Millipore, Millex�-LH,
0.45 mm). The filtrate was concentrated under reduced pres-
sure to provide the product.

Typical Procedure for the Semihydrogenation of
Alkynes

A mixture of a substrate (0.25 mmol), 0.3% Pd/BN
(0.03 mol% of the substrate, 2.7 mg) and DETA (0.25 mmol,
27 mL) in MeOH (1 mL) was stirred under an ordinary (bal-
loon) hydrogen pressure at 25 8C for 6 h. The resulting mix-
ture was diluted with Et2O or hexanes (10 mL) and H2O
(10 mL), then filtered through a membrane filter (Millipore,
Millex�-LH, 0.45 mm). The filtrate was separated into two
layers and the aqueous layer was further extracted with
Et2O or hexanes (10 mL �2). The combined organic layers
were dried over MgSO4, and concentrated under vacuum to
give the product. If purification was required, the product
was isolated after flash column chromatography.
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