LANGMUIR

Subscriber access provided by Nottingham Trent University

Interfaces: Adsorption, Reactions, Films, Forces, Measurement Techniques, Charge Transfer, Electrochemistry, Electrocatalysis, Energy Production and Storage

Trace Amount CoFeOAnchored on a TiO Photocatalyst Efficiently Catalyzing O Reduction and Phenol Oxidation

Min Chen, and Yiming Xu

Langmuir, Just Accepted Manuscript • DOI: 10.1021/acs.langmuir.9b00291 • Publication Date (Web): 26 Jun 2019 Downloaded from http://pubs.acs.org on June 27, 2019

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Trace Amount CoFe₂O₄ Anchored on a TiO₂ Photocatalyst Efficiently Catalyzing O₂ Reduction and Phenol Oxidation

Min Chen, and Yiming Xu*

State Key Laboratory of Silicon Materials and Department of Chemistry, Zhejiang University, Hangzhou 310027, China.

Keywords: Photocatalysis; O_2 reduction; Organic oxidation; Ti O_2 ; CoFe₂ O_4 ; Semiconductor; Spinel.

ABSTRACT: Semiconducting TiO₂ is the most studied photocatalyst for organic oxidation by O₂. To accelerate the reaction, a co-catalyst for O₂ reduction or for organic oxidation is often used, but the bifunctional one is rare. Herein we report a spinel CoFe₂O₄ (CF) efficiently catalyzing O₂ reduction and phenol oxidation on TiO₂ in aqueous suspensions at pHs 3–11. The composite materials (CF/TiO₂) were made by depositing o–5 wt% CF onto TiO₂ through a hydrothermal method. Solid characterization showed that CF nanoparticles (5 nm) homogenously distributed in CF/TiO₂, whereas TiO₂ phase remained unchanged in crystal structure and crystallite size. For phenol oxidation under UV light, CF was nearly not active, but o.o1 wt % CF/TiO₂ was more active than TiO₂, by approximately a factor of 3.6. Such trend in activity among the catalysts was also observed from the photocatalytic reduction of O₂ to H₂O₂, and from the electrochemical oxidation of phenol and H₂O, respectively. An open circuit potential and photoluminescence measurement suggest that there is an interfacial electron transfer from TiO₂ to CF, followed by O₂ reduction. Accordingly, a possible mechanism is proposed, involving CF catalysis for O₂ reduction and phenol oxidation, respectively. Then the mutual promotion between electron and hole transfer results into great enhancement in the efficiency of charge separation, and hence in the rate of chemical reaction. Since spinel compounds have rich composition and unique structures, they are worthy of being further investigated as co-catalysts of a semiconductor photocatalysis.

INTRODUCTION

Titanium dioxide is the most studied photocatalyst for energy and environmental application, due to its low cost, good activity, and high stability.^{1,2} The primary process occurring over the irradiated TiO₂ is generation of electrons (e_{cb}) and holes (h_{vb}) in the conduction and valence bands, respectively. Then these charge carriers recombine to heat, or migrate onto the surface to react with sorbents. For example, e_{cb} of anatase TiO₂ can reduce O₂ to O₂^{-•}, whereas the counterpart h_{yb}^{+} can oxidize various organics to CO2 and other products. There are many factors influencing the efficiency of TiO₂ photocatalysis. Among them, the physical property of TiO₂ is the determining one.^{3,4} In general, the apparent photocatalytic activity of TiO₂ greatly changes with its crystal structure, surface area, defect sites, and so on. But the intrinsic photocatalytic activity of TiO₂ exponentially increases with its synthesis temperature, regardless of the solid structures.⁵⁻⁹ A high intrinsic photocatalytic activity means a large number of e_{cb} and $h_{\rm vb}^{+}$, which have migrated onto and reached the oxide surface. Due to fast charge recombination and slow surface reaction, however, the quantum efficiency of TiO₂ photocatalysis is still not high enough to enable practical application.¹⁰ Therefore, how to speed up the interfacial charge transfer is the central issue in TiO₂ photocatalysis.

One of the strategies is modification of TiO₂ surface with a co-catalyst. For instance, a Fe₂O₃ cluster deposited on TiO₂ can mediate the electron transfer to O₂ through a Fe^{III/II} recycle, and hence accelerate phenol oxidation.^{11,12} A cobalt phosphate (CoPi) deposited on TiO₂ can mediate the hole transfer to water,¹³ and phenol,¹⁴ through a Co^{IV/III} recycle. But Fe₂O₃/TiO₂ is only 1.7 times more active than TiO₂, whereas CoPi/TiO₂ is deactivated in absence of CoPi repairer and electron remover. Furthermore, previous catalysts rarely possess catalytic activity for both O₂ reduction and organic oxidation. Herein we report a bifunctional performance of CoFe₂O₄ in TiO₂ photocatalysis for phenol oxidation in aqueous solutions at pHs 3–11.

Recently, spinel compounds as catalysts for the reduction and evolution of O_2 have received great attention.¹⁵ For example, $CoFe_2O_4$ (devoted as CF) has catalytic activity not only for a Ru(II) dye sensitized oxidation of H_2O to O_2 , but also for the electrochemical reduction of O_2 to H_2O_2 or H_2O .¹⁶ In structure, CF is a partially inverse spinel, where Co^{2+} and Fe^{3+} occupy both the tetrahedral (A) and octahedral (B) sites. Due to presence of an unpaired electron, CF also has ferrimagnetism. Therefore, CF has been widely used as a support of TiO_2 .¹⁷⁻²⁶ The composite materials (devoted as CF/TiO₂) was prepared by hydrolysis of a Ti(IV) precursor in the presence of CF,^{17,18,24-26} or by formation of CF in the presence of TiO_2 ,²¹⁻²³ and/or by co-

ACS Paragon Plus Environment

Langmuir

formation of CF and TiO₂ from a mixed solution.^{19,20} Since CF content was high (11-78 wt%),^{18,19} these materials were magnetic, and separated easily from aqueous suspensions with an external magnet. Under UV and visible light, CF/TiO₂ is active for organic degradation, but a controversial result has been reported. On one hand, CF/TiO₂ was more active than TiO₂ for methyl blue and rhodamine B degradation.^{17,23,25,26} On the other hand, CF/TiO₂ was less active than TiO₂ for methyl orange and rhodamine B degradation.^{18,19} Such discrepancy is mostly due to the dye adsorption and sensitization that changes with the model dve and catalyst used. In aqueous solution, the adsorbed organic dyes on TiO₂ can degrade even under visible light, where dye is the light absorber, and TiO_2 is a conducting mediator for O₂ reduction.^{21,27} In other words, the role of CF in TiO₂ photocatalysis is yet to be explored.

1 2 3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22 23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57 58 59

60

In this work, the effect of CF on the photocatalytic reactions of TiO₂ has been examined. To avoid the influence of organic photolysis and adsorption, phenol was selected as a model substrate. In aqueous solution, phenol photolysis and its dark adsorption on TiO₂ are both negligible. Then the observed difference between TiO₂ and CF/TiO₂ in the rate of phenol oxidation is surely due to CF effect on the photocatalytic reaction. Samples were prepared by depositing o-5 wt % CF onto a commercially available TiO₂, via a hydrothermal method. Solid was characterized with several techniques. For phenol oxidation under UV light, CF was nearly not active, but the samples, containing 0.001-0.10 and 1-5 wt % CF, were more and less active than TiO₂, respectively. To understand the role of CF, several experiments were carried out, including the catalyst stability test, the photocatalytic reduction of O_2 to H_2O_2 , the electrochemical reduction of O₂, the photoelectrochemical oxidation of water and phenol, and the measurement of open circuit potential and photoluminescence. Furthermore, a possible mechanism responsible for the different effect of CF among samples is discussed.

RESULTS AND DISCUSSION

Solid structure was examined by X-ray diffraction (Figure 1A). The diffractions of TiO_2 were strong, and matched those for anatase TiO_2 (PDF#04-0477). The house-made CF showed a XRD pattern in good agreement with that for cubic $CoFe_2O_4$ (PDF#02-1045). But the peak intensity of CF was much weaker than that of TiO_2 . This is indicative of CF being poorly crystallized under the conditions used. The CF/TiO₂ samples were nearly the same as TiO_2 , either in the diffraction position or peak width of anatase (Figure S1). As CF content was higher than 1 wt%, however, the diffractions due to CF became visible. These observations indicate that after CF loading, TiO_2 phase remains intact in terms of the crystal structure and crystallite size, while CF in CF/TiO₂ is mostly in an amorphous form.

Figure 1. (A) XRD patterns of (a) TiO_2 , (b) 5% CF/TiO₂, and (c) CF. (B) Absorption spectra of CF and o-5% CF/TiO₂.

Figure 1B shows the solid absorption spectra. In the spectrum of TiO₂, there was an intensive absorption band at wavelengths shorter than 400 nm, due to the band-toband transition of TiO₂. Through a Tauc plot, the band gap energy (E_g) for TiO₂ was estimated to be 3.12 eV (Figure S2), well matching that for anatase TiO₂.³ In the spectrum of CF, there was a broad band from 200 nm to 800 nm. The estimated E_g for CF was 1.33 eV, similar to those reported.²⁹⁻³¹ In the spectrum of CF/TiO₂, there was also a visible light absorption band, which increased with the increase of CF content. Meanwhile, the sample changed its color from white to yellow to brown (Figure S3).

Figure 2 shows the solid images of transmission electron microscopy (TEM). TiO₂ particles were flake-shaped, with a length of ca. 30-40 nm. CF particles were sphere-like, with a diameter of ca. 5 nm. But most of CF particles seriously agglomerated, due to magnetism and small size. In 5% CF/TiO₂, there were small particles (CF) present on large particles (TiO₂). In the high resolution TEM image, there were two interlayer distances at 0.35 and 0.21 nm, corresponding to the (1 o 1) facet of anatase TiO₂ (PDF#04-0477), and the (4 o 0) facet of CoFe₂O₄ (PDF#02-1045), respectively. An element mapping with 5% CF/TiO₂ showed that Fe and Co species homogenously distributed in the sample (Figure S4). These observations indicate that CoFe₂O₄ has been successfully deposited onto TiO₂ via a simple hydrothermal method.

Figure 2. TEM images of (A) TiO_2 , (B) CF, and (C) 5% CF/TiO₂, and (D) HRTEM image of 5% CF/TiO₂.

The chemical state of CF was examined by X-ray photoelectron spectroscopy (XPS), and the results are shown in Figure S5. In the spectrum of Co 2p, the peak at 780.20 eV (a satellite at 786.30 eV) is assigned to Co $2p_{3/2}$, while the peak at 796.20 eV (a satellite at 804.00 eV) is assigned to Co $2p_{1/2}$. These peaks correspond to Co^{2+} in $CoFe_2O_4$.^{32,33} Moreover, a small peak at 782.90 eV corresponds to Co³⁺. In the spectrum of Fe 2p, there were five peaks, characteristics of Fe³⁺. The peaks at 710.30 eV and 713.00 eV (a satellite at 718.50 eV), and 723.50 eV (a satellite at 726.22 eV) are assigned to Fe $2p_{3/2}$ and Fe $2p_{1/2}$, respectively.³⁴ The measured valences of Co and Fe elements in CF are in agreement with the formula of CoFe₂O₄. Moreover, the cation distribution of CF was examined by Mössbauer spectroscopy at room temperature,³⁵⁻³⁷ and the results are shown in Figure S6 and Table S1. There were 25.44 and 74.56% of Fe ions occupying the tetrahedral (tet) and octahedral (oct) sites of CF, respectively. By using a literature model,³⁸ Co ions in A and B sites were calculated to be 16.85 and 83.15%, respectively. Then CF is assigned as $(Co_{0.17}Fe_{0.51})_{tet}[Co_{0.83}Fe_{1.49}]_{oct}O_4$. Note that after CF was calcined at 500 °C, its cation distribution changed to be $(Co_{0.26}Fe_{0.75})_{tet}[Co_{0.70}Fe_{1.25}]_{oct}O_4$. That is, the CoFe2O4 sample obtained in this work is partially inverse spinel.

The porosity and surface area of solid was measured by N_2 adsorption, and the results are shown in Figure S7 and Table S2. All samples showed a hypothesis loop in the isotherms of N_2 adsorption–desorption. This is indicative of mesopores present in those samples. In a comparison with pure CF, pure TiO₂ had a smaller surface area, but a larger pore volume and average pore size. As CF content in CF/TiO₂ increased, the surface area and pore volume decreased initially, and then increased. However, the average pore size regularly decreased with the increase of CF

content. With each sample, moreover, the measured surface area was always lower than the sum of the surface area calculated from individual CF and TiO_2 , respectively. These observations indicate that the micro- and mesopores of TiO_2 are occupied or blocked by CF nanoparticles, together with construction of a large porous network.

Figure 3. (A) Photocatalytic degradation of phenol, (B) the formation of hydroquinone, and (C) the production of H_2O_2 , measured in aqueous phase of (a) TiO₂, (b) 0.01% CF/TiO₂, (c) CF, (d) CoO/TiO₂, and (e) Fe₂O₃/TiO₂.

Figure 3A shows the results of phenol degradation on different catalysts in aqueous solution. At first glance, phenol degradation on CF was very slow. Notably the reaction on 0.01% CF/TiO₂ was much faster than that on TiO₂. To verify the effect of CF, control experiments were performed. In the dark, phenol adsorption on solid was a

little (around 2%). Under UV light without catalyst, the change of phenol concentration with time was negligible. Then the observed change of phenol concentration with time is surely due to a reaction initiated by photocatalysis. Moreover, CoO/TiO₂ and Fe₂O₃/TiO₂ were only a little more active than TiO₂. These observations indicate that the activity of CF/TiO₂ much higher than that of TiO₂ mostly originates from CF, rather than CoO and Fe₂O₃.

1 2 3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57 58 59

60

To quantitatively describe the CF effect, the time profile of phenol degradation fit the pseudo first-order rate equation. The resulting rate constants (k_{obs}) from CF, TiO₂, and CF/TiO₂ were 0.19, 2.24, and 8.10, respectively, in a unit of 10⁻³ min⁻¹. Accordingly, CF is 11.8 times less active than TiO₂, whereas CF/TiO₂ is 3.6 times more active than TiO₂. These observations indicate that trace CF (0.01 wt.%) can greatly improve the photocatalytic activity of TiO₂.

During phenol degradation, hydroquinone (HQ) was formed as the major intermediate, and the result is shown in Figure 3B. As the irradiation time increased, HQ concentration in aqueous phase increased toward a limit. Among samples, the rate of HQ formation became larger in the order of 0.01% CF/TiO₂ > TiO₂ > CF. This trend in the rate of intermediate production is in agreement with that in the rate of phenol degradation. In all cases, however, the amount of HQ formed was much lower than that of phenol consumed. For example, at 120 min, the mole ratio of HQ produced to phenol disappeared was 24, 17, and 6% for CF/TiO₂, TiO₂, and CF, respectively. These observations indicate that HQ also degrades *in situ*.

During phenol degradation, H_2O_2 was also detectable, and the results are shown in Figure 3C. As the irradiation time increased, H_2O_2 concentration in aqueous phase increased. This is because the electron reduction of O_2 and the hole of phenol oxidation over TiO₂ occur at the same time.^{39,40} At given time, interestingly, H_2O_2 concentration formed from 0.01% CF/TiO₂ was approximately 3 times more than that produced from TiO₂. However, H_2O_2 in aqueous solution can adsorb and decompose on TiO₂.^{41,42} Then the real amount of H_2O_2 produced from catalyst should be larger than that measured in aqueous phase.

To assess the fate of H_2O_2 , separate experiment with 10 mM H_2O_2 was performed, and the result is shown in Figure S8. In the dark, there was approximately 5% of H_2O_2 adsorbed on TiO₂ or 0.01% CF/TiO₂. This is due to formation of a peroxide complex on the surface Ti(VI) sites.³⁷ Under UV light, H_2O_2 concentration in aqueous phase decreased with time. This is because H_2O_2 decomposes over the irradiated TiO₂, through a reductive and oxidative pathway.³⁹⁻⁴² However, the photocatalytic decomposition of H_2O_2 on 0.01% CF/TiO₂ was approximately 1.23 times faster than that on TiO₂. In combination with the result of H_2O_2 formation, it follows that CF/TiO₂ is surely more active than TiO₂ for the photocatalytic reduction of O_2 . This trend in activity between two catalysts, obtained

Figure 4. Apparent rate constants of phenol degradation, (A) over o-5% CF/TiO₂, measured at initial pH7.0, and (B) over TiO₂ and o.01% CF/TiO₂, obtained at different initial pHs.

Since 0.01% CF/TiO₂ is more active than TiO₂, it is necessary to examine the effect of CF content. To do this, the samples containing o-5 % CoFe₂O₄ were prepared under similar conditions. Figure 4A shows the results of phenol degradation over those samples in aqueous suspensions. As CF content in CF/TiO₂ increased, the rate of phenol degradation increased initially, and then decreased. A maximum reaction rate was observed from 0.01% CF/TiO₂. Since the catalysts in aqueous suspensions may have different surface area, the rate constant of phenol degradation (k_{obs}) was normalized tentatively with the solid surface area (A_{sp}) , measured by N₂ gas (Table S₂). However, the change of $k_{\rm obs}/A_{\rm sp}$ with CF content well resembles that of k_{obs} (Figure 4A). Then the observed difference in activity among the samples due to the different surface area is less likely. Since CF strongly absorbs UV light (Figure 1B), the decreased rate of phenol degradation at high CF loading is ascribed to excess CF, that reduces the number of photons reaching TiO₂, and hence slows down the TiO₂photocatalyzed reaction. These observations indicate that only trace amount CF is beneficial to TiO₂ photocatalysis. This result is quite different from those reported in the literature.¹⁷⁻²⁶ Previous samples containing 11-78 % CF

The higher activity of 0.01% CF/TiO₂ than that of TiO₂ was observed in the wide range of initial pH from 3 to 11, which is shown in Figure 4B. As the initial pH increased, the rate constant of phenol degradation increased initially, and then decreased. A maximum rate was observed at approximately pH 7.0 from 0.01% CF/TiO₂ and at pH 9.0 from TiO₂. These observations imply that CF/TiO₂ is stable in a weakly acidic and basic aqueous solution. This is important to water treatment by TiO₂ photocatalysis.

Figure 5. (A) Stability test of 0.01% CF/TiO2 for phenol degradation. (B) The corresponding formation of hydroquinone.

To illustrate the catalyst stability, a repeated experiment was performed, and the results are shown in Figure 5A. During five cycles, the photocatalytic performance of 0.01 %CF/TiO₂ was excellent. From the first run to the fifth, the rate constant of phenol degradation decreased only by a factor of 1.33. The decreased reaction rate is mostly due to the accumulated intermediates in suspensions, competing with phenol for reactive species. In fact, HQ concentration in aqueous phase increased with time, and then decreased after reaching a maximum (Figure 5B). After the last run, total HQ accumulated (48 μ M) was

only 2.5% of total phenol degraded (1.91 mM). Moreover, the possible change in chemical state was examined with 5% CF/TiO₂. After illumination with UV light for 6 h, the sample showed negligible change in the XPS spectra of Co 2p and Fe 2p, respectively (Figure S5). These observations indicate that CF is not only stable, but also helps degradation of both phenol and HQ over the irradiated TiO₂.

Figure 6. LSV curves of the film electrodes of (a) TiO_2 , (b) 0.01% CF/TiO₂, and (c) CF, measured in 0.5 M NaClO₄. (A) Under O₂ (solid lines) or N₂ (dotted lines) in the dark. (B) Under N₂ and UV light in presence of 0.43 mM phenol. (C) The corresponding current recorded at 0.90 V vs. NHE.

To understand the role of CF in TiO_2 photocatalysis, the reduction and oxidation reactions were examined, independently, by a linear sweep voltammetry (LSV). Figure 6A shows the result of O₂ reduction over TiO_2 , CF, and 0.01% CF/TiO₂ film electrodes. As the bias swept negatively, the dark current of each electrode increased. But the

electrode current obtained under air was much larger than that measured under N₂. This is indicative of O₂ reduction being the dominant process under air.

1 2 3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57 58 59

60

Among the electrodes, however, the onset potential (E_{on}) , and dark current of O₂ reduction were different. The $E_{\rm on}$ value became more positive in the order of CF > $CF/TiO_2 > TiO_2$, whereas the electrode current also became larger in the order of $CF > CF/TiO_2 > TiO_2$. As CF content in CF/TiO₂ increased, the dark current of CF/TiO₂ increased, together with a positive shift in E_{on} (Figure S10). By using a literature method,⁴³ E_{on} was estimated, which was -0.023, 0.011, 0.037, 0.047, and 0.249 V vs. NHE, respectively, for the samples containing o, o.oo1, o.o1, o.1, and 100% CF. A more positive E_{on} and a larger current correspond to an easier of reduction of O₂. These observations indicate that trace CF (0.01%) is also capable of efficiently catalyzing the electrochemical reduction of O₂ on a TiO₂ electrode, as does CF on a FTO or glassy carbon electrode.¹⁶ Note that when a graphite rod was used as counter electrode (Figure S11), and/or infrared compensation was considered (Figure S12, no significant change was observed in LSV or E_{on} trend among samples (Table S₃).

Figure 6B shows the results of phenol oxidation in 0.5 M NaClO₄, measured under N₂ and UV light. As the bias swept positively, the electrode current increase initially, and then increased toward a limit. Interestingly, the onset potential and limit photocurrent of phenol oxidation became more negative and larger, respectively, in the order of $CF/TiO_2 > TiO_2 > CF$. Similar observations were also obtained from water oxidation (Figure S13). But the onset potential of water oxidation was slightly more positive than that of phenol oxidation. That is, under the present conditions, phenol oxidation is easier than water oxidation. Moreover, at a fixed potential, the electrode photocurrent remained stable during four light-on and light-off cycles (Figure 6C). Note that the photocurrent for each catalyst was the average from four parallel electrodes (Figure S14), and therefore the present result is reliable. These observations indicate that trace CF (0.01%) is also capable of efficiently catalyzing the hole oxidation of phenol, as observed from a dye sensitized water oxidation.¹⁰

The fate of the photogenerated electrons was also examined with an open circuit potential (OCP) method. Figure 7A shows the time profiles of OCP for TiO₂, and o.o1% CF/TiO₂ film electrodes, measured in o.5 M NaClO₄ under N₂. Once the electrode was illuminated, the electrode potential dropped, due to formation of the photoelectrons. When the potential was stable, the light was blocked off. Immediately, the electrode potentials quickly raised, due to fast recombination of electrons and holes in ns–µs domain.⁴⁴ Then OCP decayed slowly with time, due to the electron scavenging by an acceptor present in electrolyte solution. However, CF/TiO₂ showed a decay of OCP faster than that of TiO₂. By using a literature equation,⁴⁵ the constant of OCP decay with time was estimated, which was 0.0061, and 0.011 s⁻¹ for TiO₂ and CF/TiO₂, respectively (Figure S15). That is, the electron transfer from TiO₂ to an acceptor is increased by a factor of 1.8, on the deposition of 0.01% CF. Since proton reduction was negligible (Figure 6A), it is possible that the "photogenerated" electrons of TiO₂ are transferred into CF (Figure 2D).

Figure 7. (A) OCP curves measured in 0.5 M NaClO₄ under N₂. (B) Photoluminesce spectra of powders under air. (C) M–S plots measured at 1 kHz in a 0.5 M NaClO₄ solution at pH 5. Samples were (a) TiO₂, (b) 0.01% CF/TiO₂, and (c) CF.

To further examine the CF effect, the solid photoluminescence (PL) spectrum was recorded, and the results are shown in Figure 7B. After TiO_2 was excited with 325 nm light, there were several emission peaks, centered at 393, 449, 467, 480, and 492 nm, respectively. The peak at 393 nm (3.16 eV) well matches the band gap of anatase TiO_2 (Figure 1B), while other peaks at 449–492 nm (2.52–2.76

> 58 59

> 60

eV) are assigned to e_{cb}^{-} recombination with the trapped h_{VB}^{+} within band gap, and/or to e_{cb}^{-} reaction with the adsorbed O_2 on the oxide surface.⁴⁶ Comparatively, the emissions of CF were rather weak, while the PL spectrum of 0.01% CF/TiO₂ was similar to that of TiO₂. But at given wavelength, the peak intensity of CF/TiO₂ was lower than that of TiO₂. In combination with OCP, it follows that the photogenerated electrons of TiO₂ are transferred into CF, followed by O₂ reduction. As a result, the emissions are reduced, either at 393 nm, or at 449–492 nm. On the other hand, it is also possible that the trapped h_{VB}^{++} of TiO₂ transfers into CF, suppressing its recombination with e_{cb}^{--} .

To understand the photocatalytic mechanism of a semiconductor (SC), one needs to know the conduction band edge potential (E_{CB}), and the valence band edge potential (E_{VB}). But such data for CoFe₂O₄ are not found in the literature. Figure 7C shows the Mott–Schottky (M–S) plots of three film electrodes in 0.5 M NaClO₄ at pH 5.0. First, the plot slope was positive for TiO₂, but negative for CF. It means that TiO₂ and CF are n-type and p-type SC, respectively.⁴⁵ Second, the plot intercept with the potential axis corresponds to the flat potential (E_{fb}). In general, E_{fb} is close to E_{CB} for n-type SC, and to E_{VB} for p-type SC. From $E_g = E_{VB} - E_{CB}$, E_{CB} of CF was calculated to be 0.46 V, more positive than that of TiO₂. The M–S plot of 0.01% CF/TiO₂ was similar to that of TiO₂. But E_f of 0.01% CF/TiO₂ was approximately 50 mV more negative than that of TiO₂.

In aqueous solution at pH o, the literature values of E_{CB} and E_{VB} for anatase TiO₂ are –0.12 and 3.08 V vs. normal hydrogen electrode (NHE), respectively.^{47,48} Then E_{CB} and E_{VB} of CF are estimated to be 0.34 and 1.67 V vs. NHE, respectively. In thermodynamics, the holes of both TiO₂ and CF are capable of oxidizing phenol (1.44 V vs. NHE) or H₂O (1.23 V vs. NHE).^{49,50} But the electron reduction of O₂ to HO₂ (-0.05 V vs. NHE) is allowed on TiO₂,⁴⁶ but not on CF. This is one of the reasons why CF is much less active than TiO₂ for the photocatalytic degradation of phenol in aqueous suspensions (Figure 3A). Recall that CF and CF/TiO₂ used in photocatalysis were prepared at 160 °C, whereas TiO₂ is industrially made at a temperature lower than 450 °C.⁷ Then the low activity of CF is also due to its poor crystallinity, as compared with TiO₂ (Figure 1A).

To verify the crystallinty effect, the solid was further calcined at 500 °C for 2 h. After that, all solids had an enhanced XRD diffraction (Figure Si6). Meanwhile, the rates of phenol degradation on TiO_2 and CF were increased by factors of 1.3 and 1.6, respectively (Figure Si7). These observations confirm that the reaction rate does increase with the crystallinity of SC (TiO_2 or CF).⁵⁻⁹ After thermal treatment, however, the rate of phenol degradation on 0.01% CF/TiO₂ decreased by a factor of 1.6. The changes in the reaction rate on the thermal treatment are not due to changes in the solid surface area (Table S4 and Figure Si7).

These observations imply that in CF/TiO₂, the amorphous CF is more efficient than the crystallized CF, in participation of the TiO_2 -photocatalyzed reaction. In other words, CF acts as a molecular cocatalyst of TiO_2 photocatalysis, instead of a semiconductor coupling with TiO_2 .

Scheme 1. Possible mechanism for the enhanced photocatalytic activity of CF/TiO₂, where small balls represent CF.

Accordingly, a possible role of CF in TiO₂ photocatalysis is proposed in Scheme 1. First, the photogenerated electrons and holes of TiO₂ are captured by the Fe³⁺ and Co²⁺ species of CF, respectively. Then, the reduced CF (Fe²⁺ species) is oxidized by O_2 , and the oxidized CF (Co^{3+} species) is reduced by phenol. As a result, CF is regenerated. These processes resemble those of Fe₂O₃ and CoPi deposited on TiO₂, respectively.¹¹⁻¹⁴ However, the photocatalytic reactions are different from the (photo)electrochemical reactions. The former occurs on the same particles in an air-exposed aqueous suspension, whereas the latter occurs on different electrodes in a N₂-purged electrolyte under an external potential. Then one may worry about the fast recombination of e_{cb}^{-} (Fe²⁺) and h_{vb}^{+} (Co³⁺) on TiO₂, making CF in null cycle. This possibly is argued as follows. First, the electron reduction of O₂ and the hole oxidation of phenol on the irradiated TiO₂ can occur simultaneously. Second, the rate of phenol degradation is proportional to the crystallite size of TiO₂.⁷ Third, CoFe₂O₄ has a unique structure, where both Fe and Co ions occupy the tetraand octahedral sites (Figure S6). Forth, a XPS study shows that in CoFe₂O₄, there are also Fe²⁺ and Co³⁺ species, peacefully coexisting together without redox reaction.^{16,33} Then the reduction and oxidation of CF can occur on the different particles of TiO₂, and/or at different sites of CF. Therefore, the proposed role of CF as a bifunctional cocatalyst in TiO₂ photocatalysis is highly plausible.

In the suspensions, both TiO_2 and CF are the light absorbing species. But the observed reaction on CF/TiO₂ is predominantly initiated by TiO_2 . This is inferred from the fact that CF is nearly not active and that 0.01% CF/TiO₂ is more active than TiO_2 . Furthermore, in TiO_2 photocatalysis, the electrons and holes are photogenerated and consumed in pairs. Any action that accelerates the electron

transfer would promote the hole transfer, and vice visa. In the present case, CF acts as a co-catalyst for both electron and hole transfer. As a result, the efficiency of charge separation is greatly improved, and CF/TiO₂ is much more active TiO₂ for the photocatalytic degradation of phenol.

CONCLUSIONS

1 2 3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57 58 59

60

In this work, a novel photocatalyst of TiO2 has been successfully deposited with trace CF (0.01 %) through a simple hydrothermal method. This material is much more active than parent TiO, for the photocatalytic oxidation of phenol in an air-saturated aqueous suspension. Impressively, the composite photocatalyst is not only stable, but also operative in both a weakly acidic and alkaline aqueous solution. An independent study of electrochemistry clearly indicates that trace CF can efficiently catalyze O₂ reduction and phenol oxidation, respectively. With the aid of an OCP and PL, it is proposed that CF acts as a bifunctional co-catalyst for both O₂ reduction and organic oxidation in TiO₂ photocatalysis. There are many spinel compounds with different compositions and unique properties.15 The present work of CoFe₂O₄ effect would help further study of spinel compounds as co-catalysts of a semiconductor photocatalysis for water splitting, organic oxidation, and environmental remediation.

EXPERIMENTAL SECTION

Material. Anatase TiO₂, peroxidase, and *N*,*N*-diethyl-1,4-phenylenediamine (DPD) were purchased from Sigma-Aldrich. FeCl₃· $6H_2O$, Co(NO₃)₂· $6H_2O$, and others in analytic grade were purchased from Shanghai Chemicals. A Milli-Q ultrapure water was used, and solution pH was adjusted with a dilution solution of NaOH or HClO₄.

Synthesis. Pure CF was synthesized using a literature method.¹⁶ Briefly, KOH solution (2.24 g, 50 mL) was slowly added into a mixed solution of iron salt (1.53 g, 15 mL), and cobalt salt (0.62 g, 15 mL). Then the suspension was transferred into a Teflon-lined autoclave, and heated at 160 °C for 6 h. After the autoclave cooled down, the solid was collected, and washed several times with water and ethanol, and dried at 50 °C overnight.

The above method was used to prepare o-5% CF/TiO₂. Typically, 0.5 g of TiO₂ was suspended in KOH solution KOH (2.24 g, 60 mL). Then 58 µL of Fe³⁺ solution (2 g/L), 31 µL of Co²⁺ solution(2 g/L), and 20 mL H₂O were mixed, and slowly added into the TiO₂ suspension. After that, the suspension was treated as described above. In this sample, the content of CF was calculated to be 0.01% in weight. Moreover, by mimicking 0.01% CF/TiO₂, two reference samples of CoO/TiO₂ and Fe₂O₃/TiO₂ were also prepared, without the addition of Fe³⁺ and Co²⁺, respectively.

Characterizations. Powder X-ray diffraction (XRD) pattern was recorded on an Ultima IV X-ray diffractometer (Rigaku, Japan). Diffuse reflectance spectra were rec-

orded on a Shimadzu UV-2600 with BaSO₄ as a reference. Reflectance (R) was transferred into Kubelka–Munk absorbance, $F_R = (1-R)^2/(2R)$. X-ray photoelectron spectroscopy (XPS) was made on an ESCA Lab 220i-XL. The spectrum was calibrated with C 1s at 284.6 eV. Adsorption isotherms of N₂ on solid were measured at 77 K on a Micromeritics ASAP2020. The solid surface area was calculated using Brunauer-Emmett-Teller (BET) equation. Photoluminescence (PL) spectrum was recorded in air at room temperature, on a Shimadzu F-2500 spectrophotometer. Scanning electron microscope (SEM) measurement was performed on a Hitachi SU-8010. Transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) images were recorded on a JEM-2100F field-emission instrument. 57Fe Mössbauer spectroscopy was recorded on a spectrometer operating in constant acceleration mode at 300K. The source used was a ⁵⁷Co (Rh), and the isomer shift was referred to α -Fe.

Photocatalysis. Reactions were carried out on a XPA-7 photochemical reactions instrument (Xujiang Nanjing). Reactor was a quartz glass tube (50 mL), thermostated at 25 °C. Light source was a high pressure mercury lamp (300W), attached with a 365 nm cut-off filter, whose intensity reaching the reactor surface was 4.5 mW/cm². Unless stated otherwise, experiments were performed under fixed conditions (1.00g/L catalyst, 0.43mM phenol, and pH 7). A suspension containing necessary components was stirred in the dark for 1 h, and then irradiated with UV light. At given intervals, 2 mL of sample was withdrawn, and filtered through a 0.22 µm membrane. The filtrate was analyzed by HPLC (high-performance liquid chromatography) on a Dionex P68o (Apollo C18 reverse column, and 50% CH₃OH as an eluent). H₂O₂ was analyzed using the literature method.²⁸ Briefly, 2.7 mL of the filtrate was mixed with 0.3 mL buffer solution (0.5 M NaH_2PO_4/Na_2HPO_4), 25 µL DPD, and 25 µL peroxidase in order. The solution absorbance at 553 nm was recorded on an Agilent 8453 UV-visible spectrophotometer.

Stability Test. In the first run, a suspension containing 2.00 g/L 0.01% CF/TiO₂ and 0.22 mM phenol at pH 7.0 was stirred in the dark for 1 h, and then irradiated for 90 min. Sample was analyzed as the above. In the second run, a certain amount of the non-irradiated catalyst suspension (2 g/L) and phenol stock solution (10.75 mM) was injected into the above irradiated suspension, as so to restore previous conditions. After stirring in the dark for 30 min, new suspension was irradiated with light for 90 min. The above procedure was repeated five times.

(Photo)electrochemical Measurement. A working electrode was fabricated by doctor blade method. First, a fluorinated tin oxide (FTO) substrate ($12-14 \Omega/sq$, and 2.2 mm thick), purchased from Pilkington Glass, was cleaned with ethanol and water, and dried in N₂. Second, the FTO substrate was coated with a gel containing 0.5 wt % cata-

56

57 58 59

60

lysts and 3.9 wt % PVA, and then sintered at 500 °C for 2 h. Third, the film glass was cut into several parts. Each part had an exposed area of 1×1 cm². Measurements were performed in 0.5M NaClO₄ (pH 7) at 10 mV/s, using a platinum gauze as counter electrode, and an Ag/AgCl electrode as reference electrode. Instrument was a CHI660E Electrochemical Station (Chenghua, Shanghai), attached with a 500 W Xenon lamp and a 320 nm cut-off filter.

ASSOCIATED CONTENT

Supporting Information. Tables of solid parameters in Mössbauer, N₂ adsorption, O₂ reduction onset potentials, XRD patterns, integrated data, Tauc plots, SEM images, photographs, Mössbauer plots, XPS spectra, N₂ adsorption isotherm, H₂O₂ decomposition, magnetization curves, dark LSV curves for IR compensation and carbon rod counter electrode, LSV curves for water oxidation, four parallel LSV curves for phenol oxidation, OCP data fitting, XRD patterns and phenol degradation on calcined samples. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

* Email: xuym@ zju.edu.cn.

Author Contributions

The manuscript was written through contributions of all authors.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENT

This work was supported by the Funds for Creative Research Group of NSFC (No. 21621005). We thank Prof. R. Liu, Dr. Q. Xiong, and group members in instrument use and discussion.

REFERENCES

(1) Hoffmann, M. R.; Martin, S. T.; Choi, W. Y.; Bahnemann, D. W. Environmental Application of Semiconductor Photocatalysis. *Chem. Rev.* **1995**, *95*, 69–96.

(2) Kumar, S. G.; Devi, L. G. Review on Modified TiO₂ Photocatalysis under UV/Visible Light: Selected Results and Related Mechanisms on Interfacial Charge Carrier Transfer Dynamics. J. Phys. Chem. A 2011, 115, 13211–13241.

(3) Carp, O.; Huisman, C. L.; Reller, A. Photoinduced Reactivity of Titanium Dioxide. *Prog. Solid State Chem.* **2004**, *32*, 33–177.

(4) Ryu, J.; Choi, W. Substrate-Specific Photocatalytic Activities of TiO₂ and Multiactivity Test for Water Treatment Application. *Environ. Sci. Tehcnol.* **2008**, *42*, 294–300.

(5) Sun, Q.; Xu, Y. Evaluating Intrinsic Photocatalytic Activities of
Anatase and Rutile TiO₂ for Organic Degradation in Water. J. Phys.
Chem. C 2010, 114, 18911–18918.

55 (6) Li, Z.; Cong, S.; Xu, Y. Brookite vs Anatase TiO₂ in the

Photocatalytic Activity for Organic Degradation in Water. ACS Catal. 2014, 4, 3273–3280.

(7) Cong, S.; Xu, Y. Explaining the High Photocatalytic Activity of a Mixed Phase TiO_2 : A Combined Effect of O_2 and Crystallinity. *J. Phys. Chem. C* **2011**, *115*, 21161–21168.

(8) Luo, B.; Li, Z.; Xu, Y. The Positive Effect of Anatase and Rutile on the Brookite-Photocatalyzed Degradation of Phenol. *RSC Advances* **2015**, *5*, 105999–106004.

(9) Li, Z.; Liu, R.; Xu, Y. Larger Effect of Sintering Temperature Than Particle Size on the Photocatalytic Activity of Anatase TiO_2 . *J. Phys. Chem. C* **2013**, *117*, 24360–24367.

(10) Emeline, A. V.; Zhang, X.; Jin, M.; Murakami, T.; Fujishima, A. Application of a "Black Body" Like Reactor forMeasurements of Quantum Yields of Photochemical Reactions in Heterogeneous Systems. *J. Phys. Chem. B* 2006, 110, 7409–7413.

(11) Sun, Q.; Leng, W.; Li, Z.; Xu, Y. Effect of Surface Fe_2O_3 Clusters on the Photocatalytic Activity of TiO_2 for Phenol Degradation in Water. *J. Hazard. Mater.* **2012**, *229*, 224–232.

(12) Wan, L.; Sheng, J.; Chen, H.; Xu, Y. Different Recycle Behavior of Cu^{2+} and Fe^{3+} lons for Phenol Photodegradation over TiO_2 and WO_3 . *J. Hazard. Mater.* **2013**, *262*, 114–120.

(13) Khnayzer, R. S.; Mara, M. W.; Huang, J.; Shelby, M. L.; Chen, L. X.; Castellano, F. N. Structure and Activity of Photochemically Deposited "CoPi" Oxygen Evolving Catalyst on Titania. *ACS Catal.* **2012**, *2*, 2150–2160.

(14) Zhang, X.; Xiong, X.; Wan, L.; Xu, Y. Effect of a Co-Based Oxygen-Evolving Catalyst on TiO_2 -Photocatalyzed Organic Oxidation. *Langmuir* **2017**, *33*, 8165–8173.

(15) Zhao, Q.; Yan, Z.; Chen, C.; Chen, J. Spinels: Controlled Preparation, Oxygen Reduction/Evolution Reaction Application, and Beyond. *Chem. Rev.* **2017**, *117*, 10121–10211.

(16) Indra, A.; Menezes, P. W.; Sahraie, N. R.; Bergmann, A.; Das, C.; Tallarida, M.; Schmeisser, D.; Strasser, P.; Driess, M. Unification of Catalytic Water Oxidation and Oxygen Reduction Reactions: Amorphous Beat Crystalline Cobalt Iron Oxides. *J. Am. Chem. Soc.* **2014**, *136*, *17530–17536*.

(17) Zuo, X.; Fei, P.; Hu, C.; Su, B.; Lei, Z. Preparation of Magnetic $TiO_2/CoFe_2O_4$ Composite Photocatalytic Nanomaterial. *Chinese J. Inorg. Chem.* **2009**, 25, 1233–1237.

(18) Mourão, H. A. J. L.; Malagutti, A. R.; Ribeiro, C. Synthesis of TiO2-Coated CoFe2O4 Photocatalysts Applied to the Photodegradation of Atrazine and Rhodamine B in Water. *Applied Catal. A* **2010**, 382, 284–292.

(19) Zhang, X.; Sun, D.; Han, Y.; Wang, J. Preparation and Sunlight Photocatalytic Properties of TiO₂-CoFe₂O₄ Magnetic Composite Materials. *Chinese J. Inorg. Chem.* **2011**, *27*, 1373–1377.

(20) Li, C.; Wang, J.; Wang, B.; Gong, J.; Lin, Z. A Novel Magnetically Separable $TiO_2/CoFe_2O_4$ Nanofiber with High Photocatalytic Activity under UV-vis Light. *Mater. Res. Bull.* **2012**, 47, 333–337.

(21) Sathishkumar, P.; Mangalaraja, R. V.; Anandan, S.; Ashokkumar, M. $CoFe_2O_4/TiO_2$ Nanocatalysts for the Photocatalytic Degradation of Reactive Red 120 in Aqueous Solutions in the Presence and Absence of Electron Acceptors. *Chem. Eng. J.* 2013, 220, 302–310.

(22) Sun, J.; Fu, Y.; Xiong, P.; Sun, X.; Xu, B.; Wang, X. A Magnetically Separable $P_{25}/CoFe_2O_4/Graphene$ Catalyst with Enhanced Adsorption Capacity and Visible-Light-Driven Photocatalytic Activity. *RSC Advances* **2013**, *3*, 22490–22497.

(23) Haw, C.; Chiu, W.; Abdul Rahman, S.; Khiew, P.; Radiman, S.;

Langmuir

Abdul Shukor, R.; Hamid, M. A. A.; Ghazali, N. The Design ofNew Magnetic-Photocatalyst Nanocomposites (CoFe₂O₄-TiO₂) as Smart Nanomaterials for Recyclable-Photocatalysis Applications. *New J. Chem.* **2016**, *4*0, 1124–1136.

1 2 3

4

5

6

7

8

9

10

11

12

13

57 58 59

60

(24) Yang, Z.; Shi, Y.; Wang, B., Photocatalytic Activity of Magnetically Anatase TiO_2 with High Crystallinity and Stability for Dyes Degradation: Insights into the Dual roles of SiO_2 Interlayer between TiO_2 and $CoFe_2O_4$. Appl. Surf. Sci. 2017, 399, 192–199.

(25) Sohail, M.; Xue, H.; Jiao, Q.; Li, H.; Khan, K.; Wang, S.; Feng, C.; Zhao, Y. Synthesis of Well-Dispersed TiO₂/CNTs@CoFe₂O₄ Nanocomposites and Their Photocatalytic Properties. *Mater. Res. Bull.* 2018, 101, 83–89.

14 Bull. 2018, 101, 83–89. 15 (26) Guo, X. H.; Ma, J. Q.; Ge, H. $CoFe_2O_4$ @TiO₂@Au Core-Shell 16 Structured Microspheres: Synthesis and Photocatalyltic Properties. Russian J. Phys. Chem. A 2018, 91, 2643–2650.

(27) Xu, Y.; Langford, C. H. UV- or Visible-Light-Induced
Degradation of X₃B on TiO₂ Nanoparticles: The Influence of
Adsorption. *Langmuir* 2001, *17*, 897–902.

(28) Bader, H.; Sturzenegger, V.; Hoigné, J. Photometric Method
for the Determination of Low Concentrations of Hydrogen
Peroxide by the Peroxidase Catalyzed Oxidation of N,N-Diethylp-Phenylenediamine (DPD). Water Res. 1988, 22, 1109–1115.

23 (29) Jing, L.; Xu, Y.; Huang, S.; Xie, M.; He, M.; Xu, H.; Li, H.;
24 Zhang, Q. Novel Magnetic CoFe₂O₄/Ag/Ag₃VO₄ Composites:
25 Highly Efficient Visible Light Photocatalytic and Antibacterial
26 Activity. Appl. Catal. B 2016, 199, 11–22.

(30) Zeng, Y.; Guo, N.; Song, Y.; Zhao, Y.; Li, H.; Xu, X.; Qiu, J.; Yu,
H. Fabrication of Z-Scheme Magnetic MoS₂/CoFe₂O₄
Nanocomposites with Highly Efficient Photocatalytic Activity. J.
Colloid Interface Sci. 2018, 514, 664–674.

30 (31) Yang, H.; Mao, Y.; Li, M.; Liu, P.; Tong, Y. Electrochemical
31 Synthesis of CoFe₂O₄ Porous Nanosheets Visible Light Driven
32 Photoelectrochemical Applications. *New J. Chem.* 2013, 37,
33 2965–2968.

34 (32) Aghavnian, T.; Moussy, J. B.; Stanescu, D.; Belkhou, R.;
35 Jedrecy, N.; Magnan, H.; Ohresser, P.; Arrio, M. A.; Sainctavit, P.;
36 Barbier, A. Determination of the Cation Site Distribution of the
37 Spinel in Multiferroic CoFe₂O₄/BaTiO₃ Layers by X-Ray
38 Photoelectron Spectroscopy. J. Electron. Spectrosc. Relat. Phenom.
38 2015, 202, 16–21.

(33) Zhou, Z.; Zhang, Y.; Wang, Z.; Wei, W.; Tang, W.; Shi, J.;
Xiong, R. Electronic Structure Studies of the Spinel CoFe₂O₄ by
X-ray Photoelectron Spectroscopy. *Appl. Surf. Sci.* 2008, 254,

6972–6975.
(34) Song, G.; Xin, F.; Yin, X. Photocatalytic Reduction of Carbon Dioxide over ZnFe₂O₄/TiO₂ Nanobelts Heterostructure in Cyclobeyapol L Colloid Interface Sci. 2017. (22, 66, 66)

Cyclohexanol. J. Colloid Interface Sci. 2015, 442, 60–66.

(35) Uzunova, E. L.; Mitov, I. G.; Klissurski, D. G. Synthesis of
Nano-Dimensional Iron-Cobalt Spinel Mixed Oxides from
Layered-Type Carbonate Hydroxide Precursors. *Bull. Chem. Soc. Jpn.* 1997, 70, 1985–1993.

(36) Lin X.; Duan H.; Wang J. Mössbauer spectra and magnetic
properties study of CoFe₂O₄ nanoparticles prepared by
hydrothermal method. J. Funct. Mater. 2012, 43, 1020-1023.

51 (37) Cao S.; Wang J. Mössbauer Spectra and Magnetic Properties 52 of CoFe₂O. Nanoparticles *J. Synth. Cryst.* **201**, *40*, 1000-1005

52 of $CoFe_2O_4$ Nanoparticles. J. Synth. Cryst. 2011, 40, 1000-1005. 53 (38) Murray, P. J.; late, J. W. L. Cation distribution in the spinels

54 $C_{0x}F_{e_3-x}O_4$. J. Phys. Chem. Solids. **1976**, 37, 1041-1042.

(39) Kormann, C.; Bahnemann, D. W.; Hoffmann, M. R. Photocatalytic Production of H_2O_2 and Organic Peroxides in Aqueous Suspensions of TiO₂, ZnO, and Desert Sand. *Environ. Sci. Technol.* **1988**, 22, 798–806.

(40) Goto, H., Quantitative Analysis of Superoxide Ion and Hydrogen Peroxide Produced from Molecular Oxygen on Photoirradiated TiO₂ Particles. *J. Catal.* **2004**, *225*, 223–229.

(41) Sahel, K.; Elsellami, L.; Mirali, I.; Dappozze, F.; Bouhent, M.; Guillard, C. Hydrogen Peroxide and Photocatalysis. *Appl. Catal. B* **2016**, *188*, 106–112.

(42) Yi, J.; Bahrini, C.; Schoemaecker, C.; Fittschen, C.; Choi, W. Photocatalytic Decomposition of H_2O_2 on Different TiO₂ Surfaces Along with the Concurrent Generation of HO₂ Radicals Monitored Using Cavity Ring Down Spectroscopy. *J. Phys. Chem. C* **2012**, *116*, 10090–10097.

(43) Chen, W. F.; Sasaki, K.; Ma, C.; Frenkel, A. I.; Marinkovic, N.; Muckerman, J. T.; Zhu, Y.; Adzic, R. R. Hydrogen-evolution catalysts based on non-noble metal nickel-molybdenum nitride nanosheets. *Angew. Chem. Int. Ed. Engl.* **2012**, *51* (25), 6131-5.

(44) Peiro, A. M.; Colombo, C.; Doyle, G.; Nelson, J.; Mills, A.; Durrant, J. R. Photochemical reduction of Oxygen Adsorbed to Nanocrystalline TiO₂ Films: A Transient Absorption and Oxygen Scavenging Study of Different TiO₂ Preparations. *J. Phys. Chem. B* **2006**, *110*, 23255–23263.

(45) Kim, J.; Monllor-Satoca, D.; Choi, W. Simultaneous Production of Hydrogen with the Degradation of Organic Pollutants Using TiO_2 Photocatalyst Modified with Dual Surface Components. *Energy Environ. Sci.* **2012**, *5*, 7647–7656.

(46) Pallotti, D. K.; Passoni, L.; Maddalena, P.; Di Fonzo, F.; Lettieri, S. Photoluminescence Mechanisms in Anatase and Rutile TiO₂. J. Phys. Chem. C 2017, 121, 9011–9021.

(47) Kavan, L.; Gratzel, M.; Gilbert, S. E.; Klemenz, C.; Scheel, H. J. Electrochemical and Photoelectrochemical Investigation of Single-Crystal Anatase. *J. Am. Chem. Soc.* **1996**, *118*, 6716–6723.

(48) Tachikawa, T.; Fujitsuka, M.; Majima, T. Mechanistic Insight into the TiO_2 Photocatalytic Reactions: Design of New Photocatalysts. J. Phys. Chem. C **2007**, 111, 5259–5275.

(49) Jinnouchi, R.; Anderson, A. B. Aqueous and Surface Rredox Potentials from Self-Consistently Determined Gibbs Energies. *J. Phys. Chem. C* 2008, *11*2, 8747–8750.

(50) Li, C.; Hoffman, M. Z. One-electron Redox Potentials of Phenols in Aaqueous Solution. *J. Phys. Chem. B* **1999**, *103*, 6653–6656.

