SELECTIVE REDUCTION OF α , β -UNSATURATED CARBONYL COMPOUNDS BY SODIUM HYDROTELLURIDE

Masakazu YAMASHITA, Yukihiko KATO, and Rikisaku SUEMITSU Department of Applied Chemistry, Faculty of Engineering. Doshisha University, Kamikyo-ku, Kyoto 602

Sodium hydrotelluride was found to serve as a new efficient agent for selective reduction of $\alpha,\beta\text{-unsaturated}$ carbonyl compounds under mild reaction conditions.

Selective reduction of α , β -unsaturated carbonyl compounds (ketones, aldehydes, esters, lactones, etc.) is one of the most important organic reactions.^{1,2)} In this letter, we wish to report that sodium hydrotelluride (NaHTe) (I), prepared from tellurium powder and sodium borohydride,³⁾ is found to be a useful and practical reducing agent for these compounds. As exemplified in Table 1, this reaction is applicable to a wide variety of α , β -unsaturated carbonyl compounds including ketones, aldehydes, esters, lactones, etc.

Representative procedure is as follows. To a solution of (I), prepared in situ from tellurium powder (0.65 g) and sodium borohydride (0.45 g) in ethanol (20 ml), was added an ethanol solution(2 ml) of 3-phenylpropenal (2 mmol) under argon. The reaction mixture was stirred at room temperature for 4-5 h. Then the mixture was filtered through Celite and the filtrate was evaporated. The residual liquid was almost pure 3-phenylpropanal (examined by GLC). The product was purified by distillation and identified by IR, NMR, MASS, and GLC.

The present procedure posseses the following characteristics: a) overreduction of the carbonyl groups and ester functions is negligible; b) isolated carbon-carbon double bonds are not reduced; c) phenyl and furyl groups are not affected; d) the operation is very simple (filtration of the reaction solution through Celite and evaporation give almost pure products).

Run	Carbonyl Compound	Product	Yield (%) ^{b)}
1	СН=СН-СНО	CH2CH2CH2CHO	> 99
2	CH=CH-CO-CH ₃	CH ₂ CH ₂ -CO-CH ₃	> 99
3	Сн=сн-со-сн ₃	С)-сн ₂ сн ₂ -со-сн ₃	> 99
4	CH=CH-COOCH ₂	CH2CH2-COOCH2-C	> 99
5		QL020	> 99
6	\rightarrow		> 99
7	°*	°. – Č – <	▶99
8	0= <o< td=""><td>но-Он о</td><td>36</td></o<>	но-Он о	36
9	н ₅ с ₂ осо-сн=сн-соос ₂ н ₅ с)	H ₅ C ₂ OCO-CH ₂ CH ₂ -COOC ₂ H ₅	5

Table 1. Reduction of α , β -unsaturated carbonyl compounds by NaHTe^{a)}

a) At room temperature for 4-5 h under argon.b) Determined by GLC.c) Diethyl maleate.

As to the stereochemistry of the reaction, (-)-carvone was converted selectively into (+)-dihydrocarvone (Run 6).⁴⁾ This shows that (I) attacks (-)-carvone exclusively from the sterically less hindered site.

1,4-Dicarbonyl compounds such as diethyl maleate and p-quinone were also reduced (Runs 8 and 9), but the yields were low.⁵⁾ Scope and limitation of this reaction are now under investigation.

References and Notes

- M. Smith in "Reduction," R. L. Augustine, Ed., Marcel Dekker, New York, N. Y., 1968, p 95.
- R. Noyori, I. Umeda, and T. Ishigami, J. Org. Chem., <u>37</u>, 1542 (1972), and the references cited therein.
- 3) D. H. R. Barton and S. W. McCombie, J. Chem. Soc. Perkin I, 1975, 1574.
- (+)-Isodihydrocarvone, diastereomer of (+)-dihydrocarvone, was not detected by GLC.
- 5) The remainder consisted mainly of the starting material. Side reactions were negligible.

(Received April 26, 1980)