Tetrahedron Letters 52 (2011) 3699-3701

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Demonstration of a convergent approach to UV-polymerizable lipids bisDenPC and bisSorbPC

Ian W. Jones*, H. K. Hall Jr.

Department of Chemistry and Biochemistry, University of Arizona, Tucson 85721, United States

ARTICLE INFO

Article history: Received 12 October 2010 Revised 15 November 2010 Accepted 16 November 2010 Available online 4 December 2010

ABSTRACT

Lipids containing UV-polymerizable diene moieties, such as BisDenPC **1** and BisSorbPC **2**, have been extremely useful for the construction of micelles and lipid bilayers. The published syntheses have yielded lipids with only a trimethylamine head group. We have improved the syntheses of these monomers by a convergent method employing the Chabrier reaction of trimethylamine with a cyclic phospholane. This method can be extended to a variety of dialkylamine derivatives.

Published by Elsevier Ltd.

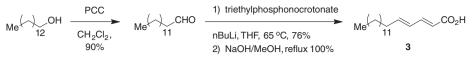
1. Introduction

For the past 25 years, the synthetic lipids bisDenPC 1 and bis-SorbPC 2 have been utilized by a number of groups, including our own, to form vesicles which undergo polymerization to impart stability.¹ Polymerization of the conjugated dienes in **1** and **2** via UV and/or redox techniques yields a poly[lipid] covalently bonded via poly-olefin chains. For a time, 1 was commercially available from Wako Chemicals and Nippon Oil & Fats Co.;² unfortunately, these companies are no longer suppliers. Previously published syntheses of 1 coupled the appropriate dienoic fatty acids to the commercially available syn-glycero-3-phosphocholine cadmium chloride adduct.^{3–5} These procedures can only yield lipids with a trimethylamine head group. We decided to try the convergent methodology⁶ to construct the phosphocholine head group onto the glycerol backbone already containing the fatty acid components. The Chabrier reaction⁷ involving displacement on a cyclic phospholane by dialkylamine derivatives has been demonstrated to be very general by Nakaya and Li⁶ for the synthesis of other linear-polymerizable lipids; however, this method has not been extended to vesicle-forming monomers. While this Letter is a preliminary report on the successful synthesis of two known lipids, this methodology is envisioned to be used to synthesize related lipids with potentially polymerizable hydrophilic head groups.⁸ Various improvements in the synthesis of the required intermediates are included in our Letter.

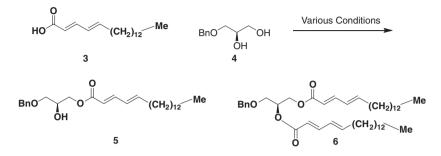
2. Results/discussion

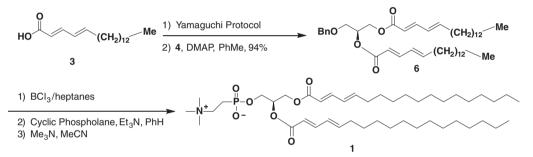
The first improvement in the synthesis of bisDenPC **1** concerned the synthesis and purification of dienoic acid $3^{.9-12}$ Previously,

after PCC oxidation of tetradecanol, subjecting the resulting tetradecanal to Horner–Wadsworth–Emmons (HWE) reaction conditions with triethylphosphonocrotonate led to a variable ratio of desired (*E*,*E*) and unusable (*E*,*Z*) isomers;¹³ similar results were obtained with either commercially available or freshly prepared methyl or ethyl HWE reagent. Urea inclusion had been the preferred separation method to isolate the pure (*E*,*E*) isomer.¹⁴ We have now observed that saponification of the intermediate methyl or ethyl ester in refluxing alkali overnight gave only the desired (*E*,*E*) dienoic acid **3**, presumably due to base-catalyzed olefin isomerization (Scheme 1).

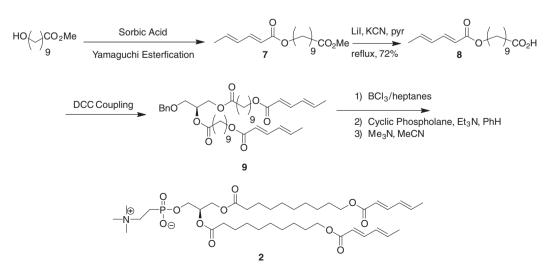

Attention then turned to diacylation of commercially available (R)-(+)-3-benzyloxy-1,2-propanediol **4** with dienoic acid **3** (Scheme 2). When the coupling reagent DCC was used, even under reflux, only the primary monoacylated product **5** and the unreacted DCC-fatty acid adduct were isolated. With the acid chloride or acid bromide¹⁵ from **3**, only **5** was observed, even when **4** was first treated with 2.2 equiv of *n*BuLi. When the acid was activated with carbonyl-diimidazole,¹⁶ again only **5** was isolated. Some mixed success was achieved using a catalytic amount of scandium(III) triflate,¹⁷ with both monoacyated **5** and diacylated **6** being isolated from the reaction mixture.

Finally, Yamaguchi esterification conditions¹⁸ yielded the onepot diacylation product **6** with no observed **5**; addition of 2,4,6-trichlorobenzoyl chloride to acid **3** in toluene with triethylamine followed by addition of **4** with DMAP gave the diacylated **6** in acceptable yield (Scheme 3). Following careful deprotection with BCl₃, the installation of the phosphocholine head group was achieved in two-steps using 2-chloro-2-oxo-1,3,2-dioxaphospholane followed by trimethylamine in acetonitrile.¹⁹ This model reaction improved the synthesis of our "workhouse" bisDenPC by a convergent method which can be extended to a variety of dialkylamine derivatives.


As to bisSorbPC **2**, the synthesis of the fatty acid component turned out to be the difficult step. The more recent approach of


^{*} Corresponding author. Address: Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, CA 93407, United States. *E-mail address:* iwjones@calpoly.edu (I.W. Jones).

Scheme 1. Synthesis of (E,E)-2,4-octadecadienoic acid 3.



Scheme 2. Synthesis of diacylated benzyloxy protected propanediol 6.

Scheme 3. Synthesis of bisDenPC 1.

Bae et al. failed in our hands; however, we did take inspiration from their work. Sorbic acid was coupled to methyl 10-hydroxydecanoate under standard Yamaguchi esterification conditions to give the mixed ester **7** (Scheme 4). We expected that saponification should occur much faster with a methyl group as opposed to a sorboyl group; yet traditional saponifications with alkali in alcohol or mixed alcohol–solvent systems were either too sluggish or not specific enough for the methyl ester. By subjecting **7** to lithium iodide and potassium cyanide in refluxing pyridine²⁰, an S_N2-type demethylation yielded the corresponding fatty acid **8**. With this saturated acid, DCC coupling of **8** to chiral diol **4** cleanly gave the diacylated product **9**. Deprotection with BCl₃ gave the expected alcohol, which was used without purification to suppress ester group migration. Subjecting the alcohol to 2-chloro-2-oxo-1,3, 2-dioxaphospholane followed by trimethylamine in acetonitrile gave bisSorbPC **2**. Again, we have improved the synthesis of our extensively used monomer using a convergent approach which can be generalized with other dimethylamine derivatives.²¹

Scheme 4. Synthesis of bisSorbPC 2.

Acknowledgments

This material is based upon work supported by the National Institutes of Health under Grant No. EB007047 under the supervision of Prof. S. Scott Saavedra.

Supplementary data

Supplementary data (the synthesis, characterization, and NMR spectra of compounds **1**, **2**, **3**, **6**, **7**, **8**, and **9**) associated with this article can be found, in the online version, at doi:10.1016/ j.tetlet.2010.11.090.

References and notes

- Lamparski, H.; Liman, U.; Barry, J. A.; Frankel, D. A.; Ramaswami, V.; Brown, M. F.; O'Brien, D. F. *Biochemistry* **1992**, *31*, 685–694; Lamparski, H.; O'Brien, D. F. *Macromolecules* **1995**, *28*, 1786–1794; Joubert, J. R.; Smith, K. A.; Johnson, E.; Keogh, J. P.; Wysocki, V. H.; Gale, B. K.; Conboy, J. C.; Saavedra, S. S. ACS Appl. Mater. Interfaces **2009**, *1*, 1310–1315.
- 2. Ohno, H.; Takeoka, S.; Iwai, H.; Tsuchida, E. Macromolecules 1989, 22, 61-66.
- Akimoto, A.; Dorn, K.; Gros, L.; Helmut, R.; Schuppu, H. Angew. Chem., Int. Ed. Engl. 1981, 20, 90–91.
- Akama, K.; Yano, Y.; Tokuyama, S.; Hosoi, F.; Omichi, H. J. Mater. Chem. 2000, 10, 1047–1059.

- Bae, S. K.; Kim, S.-H.; Kim, J.-D.; Koo, K. I.; Ryeom, T. K.; Ryeom, K.; Fu, X.; Chang, Y. H. *Tetrahedron Lett.* **2000**, *41*, 8495–8498.
- 6. Nakaya, T.; Li, Y. J. Prog. Polym. Sci. 1999, 24, 143-181.
- 7. Thanh, T. N.; Chabrier, P. Bull. Soc. Chim. Fr. 1974, 3-4, 667.
- 8. An article describing the synthesis of more than 10 appropriate potentially polymerizable hydrophilic head groups shall be forthcoming.
- Garigipati, R. S.; Freyer, A. J.; Whittle, R. R.; Weinreb, S. M. J. Am. Chem. Soc. 1984, 106, 7861–7867.
- 10. Ringsdorf, H.; Schupp, H. J. Macromol. Sci., Part A 1981, 15, 1015–1026.
- 11. Lamparski, H.; Liman, U.; Barry, J. A.; Frankel, D. A.; Ramaswami, V.; Brown, M. F.; O'Brien, D. F. *Biochemistry* **1992**, *31*, 685–694.
- Dorn, K.; Klingbiel, R. T.; Specht, D. P.; Tyminski, P. N.; Ringsdorf, H.; O'Brien, D. F. J. Am. Chem. Soc. 1984, 106, 1627–1633.
- 13. Liu, S.; O'Brien, D. F. Macromolecules 1999, 32, 5519-5524.
- Srisiri, W.; Sisson, T. M.; O'Brien, D. F.; McGrath, K. M.; Han, Y.; Gruner, S. M. J. Am. Chem. Soc. 1997, 119, 4866–4873.
- 15. Aizpurua, J. M.; Palomo, C. Synthesis 1982, 8, 684-687.
- Foss, B. J.; Sliwka, H.-R.; Partali, V.; Kopsel, C.; Mayer, B.; Martin, H. D.; Zsila, F.; Bikadi, Z.; Simonyi, M., et al *Chem. Eur. J.* 2005, *11*, 4103–4108.
- Ishihara, K.; Kubota, M.; Kurihara, H.; Yamamoto, H. J. Org. Chem. 1996, 61, 4560–4567.
- Furstner, A.; Nagano, T.; Muller, C.; Seidel, G.; Muller, O. Chem. Eur. J. 2007, 13, 1452–1462.
- 19. Jia, C.; Haines, A. H. J. Chem. Soc., Perkin Trans. 1 1993, 2521-2523.
- Taschner, E.; Liberek, B. Rocz. Chem. 1956, 30, 323; Elsinger, F.; Schreiber, J.; Eschenmoser, A. Helv. Chim. Acta 1960, 43, 113–118.
- 21. Jones, I. W.; Hall, H. K., unpublished results.