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ABSTRACT: An efficient and mild method for reductive C−O bond cleavage
of lignin β-O-4 ketone models was developed to afford the corresponding
ketones and phenols with PDI-CoCl2 as the precatalyst and diboron reagent as
the reductant. The synthetic utility of the methodology was demonstrated by
depolymerization of a polymeric model and gram-scale transformation.
Mechanistic studies suggested that this transformation involves steps of
carbonyl insertion, 1,2-Brook type rearrangement, β-oxygen elimination, and
rate-limiting regeneration of the catalytic active Co−B species.

Lignin is a class of important aromatic biopolymers and
represents ∼30% of nonfossil organic carbon.1 Thus,

degradation of lignin is a sustainable way to produce bulk
chemicals, which has attracted a great deal of attention in both
academia and industry.2 The primary structure of lignin
consists of electron-rich phenyl propanol units randomly
joined by many different linkages, in which the β-O-4 unit is
the most abundant.3 A variety of elegant strategies, including
oxidative,4 reductive,5 and redox-neutral6 protocols, have been
developed to cleave the β-O-4 linkages in recent years.
However, due to its high bond energy and complex structure
consisting of C−C and C−O linkages,7 these methods
generally suffered from high temperatures, low yields, and
low chemoselectivity. Hence, the development of an efficient
and mild strategy for selective cleavage of β-O-4 linkages is
highly valuable.
In the past two decades, an increasing level of attention has

been paid to the earth-abundant transition metal−boryl (M−
B) complexes generated in situ from a mixture of metal salt,
diboron reagent, and base,8 as these species have been found to
be catalytically active for various important transformations.9

In 2006, Sadighi and co-workers pioneered the catalytic
diboration of aldehydes, which was mediated via insertion of
an aldehyde CO group into a Cu−B bond process (Scheme
1a).10,11 Subsequently, Lin and Marder investigated the
detailed mechanism with the aid of DFT calculations,12

showing that the intermediate from carbonyl insertion having a
Cu−O−C−B linkage would convert to the thermodynamically
preferred Cu−C−O−B isomer via 1,2-Brook type rearrange-
ment13,14 in the absence of a diboron reagent. In 2012,
Molander et al. applied this methodology to monoboration of
aldehydes with MeOH as a proton source.15 Recently, Ito and
co-workers developed an asymmetric version of copper-
catalyzed monoboration of aldehydes and ketones, producing
chiral alcohol derivatives efficiently.16 To the best of our
knowledge, the application of metal−boryl catalysis for C−O

bond cleavage of β-O-4 linkages has not been reported so far.
We postulated that beginning with the insertion of a CO
group into the M−B bond to generate a M−O−C−B species
(I) and the subsequent 1,2-Brook type rearrangement to form
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Scheme 1. Catalytic Transformations Mediated via Insertion
of a CO Group into the M−B Bond
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the thermodynamically preferred M−C−O−B species (II), the
M−B catalysis could serve as a platform for C−O bond
cleavage of lignin β-O-4 ketone models by β-O elimination17

(Scheme 1b). This approach affords alkenyl boron ether (III)
and phenoxyl-metal (IV) and finally generates the correspond-
ing ketone and phenol as the products by protonation.
Our investigation began with the evaluation of reaction

parameters using 2-phenoxy-1-phenylethan-1-one (1a) as the
model substrate (Table 1). After screening the reaction

conditions, we found 1a could exclusively convert to
acetophenone (2a) in the presence of B2pin2 (1.1 equiv) at
65 °C when PDI-CoCl2, NaOtBu, MeOH, and THF were used
as the catalyst, base, additive, and solvent, respectively (entry
1). The nickel complex also acted as a competent catalyst for
this transformation (entry 2). Employing another earth-
abundant transition metal catalyst (Cu, Mn, Fe, or Zn), the
desired product 2a was formed in poor yields (entries 3−7).
The combinations of CoCl2 with other ligands were also
tested, giving 2a in 32−60% yields (entries 8−11). When the
load of NaOtBu was decreased to 10 mol %, the reaction could
also proceed smoothly to give 2a in good yield (entry 12).
However, the yield was unstable, because the NaOtBu powder
would adhere to the inner wall of the tube during its addition.
Control experiments established that the metal catalyst, base,
and MeOH were essential for the excellent yield of 2a (entries
13−15, respectively). However, employing reducing agents,
including NaHBEt3 and KC8, instead of a base also made this
reaction feasible (Table S1). In addition, decreasing the
temperature to 25 °C led to a relatively lower yield of 2a (entry
16).

With the optimized reaction conditions in hand, the
substrate scope was next expanded (Scheme 2). The position

of the substituent on the phenyl ring (Ar) did not alter the
reaction efficiency as demonstrated with the methoxy
substituent (1b−1d). The substituents of alkyl, phenyl,
protected thiophenol, and fluoro at the para position of the
phenyl ring could be well tolerated (1e−1h, respectively). The
reactions of substrates containing chloro and bromo atoms
gave the products in slightly lower yields (1i and 1j,
respectively), and ∼5% of the dehalogenated product formed
in the reaction of 1j. Strongly electron-deficient substituents
such as trifluoromethyl (1k) and methylsulfonyl (1l) group
were compatible with this catalytic system. A substrate bearing
two substituents on the phenyl ring resulted in a similar
reaction activity (1n). Other aryl rings such as 2-naphthalene,
1-naphthalene, and thiophene were well tolerated to afford the
desired products in 84−94% yields (1o−1q, respectively).
Secondary alcohol derivatives (1r and 1s) facilitated this
transformation and delivered the corresponding ketones in
excellent yields. In addition, deoxygenation of the tertiary
alcohol derivative (1t) afforded 2t in 73% yield. Different R1

groups were then investigated (1u−1ag). The steric and

Table 1. Optimization of Reaction Conditions

entry deviation from standard conditionsa 2a (%)b

1 none 99 (97)c

2 PDI with NiCl2 instead of PDI-CoCl2 78
3 PDI with CuCl2 instead of PDI-CoCl2 15
4 PDI with CuCl instead of PDI-CoCl2 23
5 PDI with MnCl2 instead of PDI-CoCl2 8
6 PDI with FeCl2 instead of PDI-CoCl2 32
7 PDI with ZnCl2 instead of PDI-CoCl2 5
8 OIP-CoCl2 instead of PDI-CoCl2 60
9 PAO with CoCl2 instead of PDI-CoCl2 56
10 PNP with CoCl2 instead of PDI-CoCl2 32
11 Xantphos with CoCl2 instead of PDI-CoCl2 18
12 with 10 mol % NaOtBu 80−94
13 no PDI-CoCl2 9
14 no MeOH 57
15 no NaOtBu trace
16 at 25 °C 73

aThe reaction was conducted with 1a (0.5 mmol), PDI-CoCl2 (0.025
mmol), B2pin2 (0.55 mmol), NaOtBu (0.25 mmol), and MeOH (1
mmol) in THF (1 mL) at 65 °C for 3 h. bYields were determined by
1H NMR using mesitylene as the internal standard. cIsolated yield.

Scheme 2. Substrate Scopea

aThe reaction was conducted with 1 (0.50 mmol), B2pin2 (0.55
mmol), PDI-CoCl2 (0.025 mmol), NaOtBu (0.25 mmol), and MeOH
(1.0 mmol) in THF (1 mL) at 65 °C for 3 h. bTwelve hours.
cAccompanied by ∼5 mol % dehalogenated product. dB2pin2 (1.0
mmol) for 24 h. eB2pin2 (0.75 mmol) and NaOtBu (0.50 mmol) for
24 h.
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electronic effect of substituents on the aryl ring (R1) had a
marginal influence on the yield (1u−1aa). A direct cleavage of
the free hydroxyl group was also achieved employing this
catalytic system (1ab). The reactions of substrates with OMe
and OTBS as the leaving groups were much less efficient (1ac
and 1ad). In the case of substrates bearing α-acyl groups, the
catalytic system afforded the deoxygenation products efficiently
(1ae−1ai), albeit a relatively longer reaction time was required
for these cases.
To further showcase the synthetic utility, the catalytic

system was applied to depolymerization of a polymeric lignin
β-O-4 ketone model (4), producing the ketone monomer (5)
in 78% yield (eq 1). The C−O bond cleavage reaction could
be scaled up to gram scale smoothly, affording the
corresponding ketone and phenol in 93% and 71% yields,
respectively (eq 2).

To explore the mechanistic details of this transformation, we
conducted quantitative kinetic studies (Figure 1) to determine

the role of the substrate (1a), B2pin2, and catalyst at the rate-
determining step (RDS). Measurements of the initial rates
(kin) for the reaction of 1a with different concentrations of
PDI-CoCl2 and B2pin2 showed increases in the rates. Plots of
kin versus the concentration of PDI-CoCl2 (Figure 1a) and
B2pin2 (Figure 1b) gave two linear curves (slopes of 1.91 ×
10−2 and 1.45 × 10−2 M min−1, respectively), which suggested
a first-order rate dependence on catalyst and B2pin2. However,
an inverse correlation was found between kin and the
concentration of 1a (Figure 1c). These quantitative kinetic
studies indicated that B2pin2 should be involved in the RDS
and the reaction is slowed by excess substrate 1a.
On the basis of the quantitative kinetic studies and literature

report12 on insertion of a CO group into the Cu−B bond, a
plausible catalytic cycle is proposed in Scheme 3. First, a

ligated cobalt−boryl species (A) is generated by treating the
PDI-CoCl2 complex with a base and B2pin2.

8d,18,19 Following
the coordination of the substrate to the cobalt center, insertion
of a CO group into the Co−B bond forms species B, which
undergoes 1,2-Brook type rearrangement to produce species C.
Then, β-O elimination yields alkenyl boron ether and cobalt-
alkoxyl species (D).20 Finally, regeneration of A occurs via a
rate-limiting transmetalation process between D and B2pin2.
DFT calculations were carried out to improve our

understanding (Figures 2 and 3). Upon the formation of
Co(I)−boryl species A,8d its complexation with 1a to form
IN1 is almost energetically neutral (Figure 2). The insertion of
the carbonyl functionality of 1a into the Co−B bond of A
occurs via TS1 facilely with an activation barrier of 10.1 kcal/
mol, giving rise to intermediate IN2 exergonically. The energy
for regioisomeric insertion is much higher than that for TS1
(Figure S5). To undergo further transformation, the 1,2-Brook
type rearrangement would occur first to generate the alkyl Co
species. This process is realized via a stepwise reaction by the
generation of a three-membered ring intermediate IN3 via
TS2, requiring a barrier of only 6.5 kcal/mol and being slightly
endergonic. From zwitterionic species IN3, C−B bond
cleavage via TS3 is very easy and leads exergonically to alkyl
Co(I) complex IN4 in which the Co atom is associated
strongly with the O atom with a Co−O distance of 2.08 Å. The
dissociation of the Co−O interaction is favorable as IN5 would
be much lower in energy than IN4. Prior to the β-oxygen
elimination, complex IN6, in which the phenoxide oxygen is
associated with the Co, should be formed from IN5 by bond
rotation. From IN6, C−O bond cleavage occurs via TS4 with a
barrier of 12.2 kcal/mol, leading to alkenyl boron ether IN7
and Co(I)-phenoxide highly exergonically. The final product
could be formed by further protonation of IN7.
The regeneration of catalytic species A from the Co(I)-

phenoxide (LCo-OPh) was next investigated. The direct
metathesis of LCo-OPh with B2Pin2 involves two steps (Figure
3a). The first step is phenoxide transfer. In this step, the Co−O
bond is cleaved via TS5, from which the phenoxide moiety is
transferred to the boron moiety with a barrier of 22.7 kcal/mol
to form zwitterionic intermediate IN8 energonically. In IN8,
the B1−O distance is obviously longer than the normal B−O
bond (1.60 Å in IN8 vs 1.36 Å in IN11) while the B1−B2
distance is almost unchanged (1.76 Å in IN8 vs 1.71 Å in
B2Pin2). Prior to the second step of boryl transfer, IN8 should
first isomerize to IN9. In the latter complex, the negative
charge on B2 is stabilized by both Co (Co−B2 = 2.35 Å) and
B1 (B1−B2 = 1.89 Å) and the B1−O interaction is enhanced

Figure 1. Quantitative kinetic studies. (a) Plot of kin vs PDI-CoCl2
concentration. (b) Plot of kin vs B2pin2 concentration. (c) Plot of kin
vs 1a concentration.

Scheme 3. Proposed Mechanism
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(B1−O = 1.52 Å). IN9 is unstable and undergoes the boryl
transfer facilely via TS6, from which the B1−B2 is completely
destroyed and the complex IN10 is formed. Finally, A is
regenerated by dissociation of IN11 from Co. Accordingly, the
transfer of the phenoxide moiety to B2Pin2 via TS5 is the most
difficult step, in good agreement with the kinetic results.
The observed inverse correlation of the reaction rate and

concentration of 1a from quantitative kinetic studies could be
probably attributed to more difficult metathesis if LCo-OPh
reacts first with 1a (Figure 3b). In the presence of excess 1a
and NaOtBu, the transformation of Co(I)-pheoxide to Co(I)-
enolate IN12 would be energetically favored by 1.0 kcal/mol.
From the latter intermediate, the enolate transfer from Co to B
via TS7 requires an activation barrier of 25.6 kcal/mol. The
generated zwitterionic species IN13 will finally deliver A and
IN14 by boryl transfer. Thus, the barrier required for
metathesis involving enolate would be at least 2.9 kcal/mol
higher than that shown in Figure 3a, being in qualitative
agreement with the experimental observation.
In summary, we have developed an efficient method for

reductive C−O bond cleavage with a cobalt catalyst in the
presence of a diboron reagent and base, converting lignin β-O-

4 ketone models into the corresponding ketones and phenols.
This reaction could be applied to depolymerization of
polymeric lignin β-O-4 ketone and scaled up to gram scale
smoothly. Mechanistic investigations by quantitative kinetic
studies and DFT calculations indicated the in situ-generated
cobalt−boryl complex is the catalytically active species and the
1,2-Brook type rearrangement is involved in the generation of
the alkyl-cobalt intermediate, from which the C−O bond
cleavage occurs via β-O elimination.
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Figure 2. DFT-calculated energy profile for the generation of alkenyl boron ether IN7 starting from A and 1a (L = PDI).

Figure 3. DFT-calculated energy profile for the regeneration of active
species A (L = PDI).
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