P. S. Mainkar et al.

Letter

Ruthenium(II)-Catalyzed Hydration of Terminal Alkynes in PEG-400

Α

Prathama S. Mainkar** Venkataraju Chippala^{a,b} Rambabu Chegondi^a Srivari Chandrasekhar*^{a,b}

- ^a Division of Natural Products Chemistry, CSIR Indian Institute of Chemical Technology, Hyderabad, 500007, India
- ^b Academy of Scientific and Innovative Research (AcSIR), CSIR - Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500007, India srivaric@iict.res.in

Received: 28.03.2016 Accepted after revision: 23.04.2016 Published online: 18.05.2016 DOI: 10.1055/s-0035-1561864; Art ID: st-2016-d0217-l

Abstract The ruthenium(II)-catalyzed hydration of terminal alkynes in PEG-400 to yield methyl ketones through Markovnikov addition of water across alkyne is reported.

Key words PEG-400, ruthenium, methyl ketones, terminal alkynes

Synthesis of methyl ketones from terminal alkynes is a well studied reaction.¹ As summarized in Scheme 1, the addition of water to alkynes has been reported using metal catalysts such as gold,² silver,³ indium,⁴ platinum,⁵ rhodium,6 cobalt,7 mercury,8 and iridium.9 Addition of ligands such as porphyrins⁷ or trisubstituted phosphines⁹ to the catalytic system helps to improve the yield of the methyl ketone. The presence of a directing group such as a proximal hydroxyl or acetoxy substituent leads to conversion into the ketone in higher yields.¹⁰ Addition of water in the presence of alcohol as solvent helps in selective formation of the ketone over aldehyde through the formation of a ketal, in accordance with Markovnikov's rule. Special catalysts, such as Ru,¹¹ have been developed for the formation of aldehydes, which are the disfavored anti-Markovnikov product. Ru(II) catalysts, in the presence of alcohols, have been used to synthesize keto esters and this approach avoids the additional step of ester formation.

These reports describe formation of carbonyl compounds from terminal alkynes but, in many cases, require strong acids as additives, which limits their application to a wider variety of substrates. The cost of the metal catalysts may also be a consideration. Other catalysts use ligands such as triphenylphosphine, trialkoxy phosphite, porphyrin or NHC. We wished to carry out the reaction in PEG-400, which has the advantages that the reagent can be recycled,

ligands are not required to carry out the reaction, and the use of other solvents can be avoided.

We have used PEG extensively as an environmentally benign solvent for reactions involving metal catalysts such as Heck¹² and Sharpless dihydroxylation reactions.¹³ The total synthesis of centrilobine¹⁴ has been achieved in PEG-400 and methodologies have been developed for the synthesis of pyrrole¹⁵ and 3-indole derivatives.¹⁶ In a continuation of our work towards reactions in PEG-400, we decided to explore the hydration of terminal alkynes using dichloro(p-cymene)ruthenium(II) dimer.

As a first step, to explore the reaction of terminal alkyne with dichloro(p-cymene)ruthenium(II) dimer in PEG-400, 3-butynol benzyl ether (1a) was used as substrate (Scheme 2). The reaction led to the formation of 4-O-benzyl-2-butanone (2a) in 63% yield. Analytical data confirmed the formation of **2a** (Table 1).¹⁷ With this unusual result, given that Ru (II) was expected to yield the aldehyde, we explored

Synlett

P. S. Mainkar et al.

more scaffolds to determine whether there would be consistent ketone formation. Thus, diketone **1b**, *O*-benzoyl-3butynol (**1c**), *N*-propynyl phthalimide (**1d**), aryl alcohol **1e**, and cyclohexanedione **1f** were reacted using dichloro(*p*-cymene)ruthenium(II) dimer in PEG-400 and the resulting methyl ketones **2b**-**f** were obtained in yields of 58 to 89%. To expand the substrate scope, alkynoic acids **1g**, **1h**, and **1i** were reacted to isolate the keto acids **2g**-**i** directly in 86– 92% yields, unlike previous reports where acids were converted into esters. Substrates **1j**, **1k**, and **1l** also gave the corresponding methyl ketones **2j–l** in good yields. Cholesterol alkyne ester **1m** was converted into **2m** in 58% yield and sugar ether **1n** gave **2n** in 50% yield. Thus, we have developed mild conditions for the synthesis of methyl ketones for a variety of substrates without affecting other functionalities present in the molecule, by using Ru(II) catalyst. The only substrates that failed to generate the methyl ketones were arylalkynes.

Table 1 Ru(II)-Catalyzed Hydration of Terminal Alkynes^{a,b} [(RuCl₂{p-cymene})₂] (5 mol%) R PEG-400, H₂O, r.t. 1 2 Time (h) Product Yield (%) Entry Alkyne 1 1a 24 2a 63 `OBn OBn 2 1b 12 2Ь 78 3 24 2c 58 1c OBz OBz 4 1d 24 2d 88 QН ОН QМе OMe 5 73 24 1e 2e ÓМе ÓМе 1f 12 2f 89 6 OH 7 12 2g 92 1g 8 12 2h 86 1h 12

Syn lett

P. S. Mainkar et al.

Letter

Table 1 (continued)

۸

С

 $^{\circ}$ Reactions were carried out with **1** (1 mmol) in 4:1 mixture of PEG 400/H₂O (0.5 M).

^b Isolated yield after column chromatography.

After studying various scaffolds for substrate specificity, we investigated the activity of the catalyst for recyclability (Table 2). Thus, 4-pentynoic acid was used as a substrate and the catalyst was recycled, the second run gave good yield (83%) and the third gave a reasonable yield (70%); however, the yields continued to drop subsequently, possibly due to loss of the catalyst during workup. The product obtained in the repeated runs was identical in all respects with the first run product. Thus, modification of the Ru catalyst to make it less soluble in organic solvents, so that recyclability is efficient, is of possible interest.

 Table 2
 Recyclability of Ruthenium(II) Catalyst in PEG-400

HO HO 1g	[] - ////	[(RuCl ₂ { <i>p</i> -cymene}) ₂] (5 mol%) PEG-400, H ₂ O r.t., 12 h		HO O 2g		
Run	1st	2nd	3rd	4th	5th	
Yield (%)ª	92	83	70	65	52	

^aIsolated yield after column chromatography.

In conclusion, a novel, mild and high yielding methodology for conversion of alkyne acids into keto acids has been developed. The methodology can be extended to ethers, esters, and carbonyl containing compounds and to scaffolds

P. S. Mainkar et al.

such as steroidal and carbohydrate derivatives. This methodology avoids the use of strong acids or ligands.

Acknowledgment

V.R.C. thanks the Council of Scientific and Industrial Research (CSIR), New Delhi, for a Research Fellowship and R.C. thanks CSIR-Senior Research Associateship (Scientists' Pool Scheme) for financial assistance. S.C. and P.S.M. thank CSIR, New Delhi for financial support as part of a five-year program project under ORIGIN (CSC-108).

Supporting Information

Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0035-1561864.

References and Notes

- (1) Modern Carbonyl Chemistry; Otera, J., Ed.; Wiley-VCH: Weinheim, **2000**.
- (2) (a) Casado, R.; Contel, M.; Laguna, M.; Romero, P.; Sanz, S. J. Am. Chem. Soc. 2003, 125, 11925. (b) Zhu, F.-X.; Wang, W.; Li, H.-X. J. Am. Chem. Soc. 2011, 133, 11632. (c) Wang, D.; Cai, R.; Sharma, S.; Jirak, J.; Thummanapelli, S. K.; Akhmedov, N. G.; Zhang, H.; Liu, X.; Petersen, J. L.; Shi, X. J. Am. Chem. Soc. 2012, 134, 9012. (d) Marion, N.; Ramón, R. S.; Nolan, S. P. J. Am. Chem. Soc. 2009, 131, 448. (e) Ghosh, N.; Nayak, S.; Sahoo, A. K. J. Org. Chem. 2011, 76, 500. (f) Leyva, A.; Corma, A. J. Org. Chem. 2009, 74, 2067. (g) Liang, S.; Jasinski, J.; Hammond, G. B.; Xu, B. Org. Lett. 2015, 17, 162. (h) Nun, P.; Ramon, R. S.; Gaillard, S.; Nolan, S. P. J. Organomet. Chem. 2011, 696, 7. (i) Mizushima, E.; Sato, K.; Hayashi, T.; Tanaka, M. Angew. Chem. Int. Ed. 2002, 41, 4563.
- (3) (a) Thuong, M. B. T.; Mann, A.; Wagner, A. Chem. Commun. 2012, 48, 434. (b) Venkateswara, K. T.; Prasad, P. S. S.; Lingaiah, N. Green Chem. 2012, 14, 1507. (c) Saha, S.; Sarbajna, A.; Bera, J. K. Tetrahedron Lett. 2014, 55, 1444.
- (4) Peppe, C.; Lang, E. S.; Ledesma, G. N.; Castro, L. B.; Barros, O. S. R.; Mello, P. A. Synlett 2005, 3091.
- (5) Baidossi, W.; Lahav, M.; Blum, J. J. Org. Chem. 1997, 62, 669.
- (6) Blum, J.; Huminer, H.; Alper, H. J. Mol. Catal. **1992**, 75, 153.
- (7) Tachinami, T.; Nishimura, T.; Ushimaru, R.; Noyori, R.; Naka, H. J. Am. Chem. Soc. 2013, 135, 50.
- (8) Nishizawa, M.; Skwarczynski, M.; Imagawa, H.; Sugihara, T. Chem. Lett. 2002, 31, 12.
- (9) Hirabayashi, T.; Okimoto, Y.; Saito, A.; Morita, M.; Sakaguchi, S.; Ishii, Y. *Tetrahedron* **2006**, *62*, 2231.
- (10) (a) Ghosh, N.; Nayak, S.; Sahoo, A. K. J. Org. Chem. 2011, 76, 500.
 (b) Wang, D.; Cai, R.; Sharma, S.; Jirak, J.; Thummanapelli, S. K.; Akhmedov, N. G.; Zhang, H.; Liu, X.; Petersen, J. L.; Shi, X. J. Am. Chem. Soc. 2012, 134, 9012.
- (11) (a) Suzuki, T.; Tokunaga, M.; Wakatsuki, Y. Org. Lett. 2001, 3, 735. (b) Chevallier, F.; Breit, B. Angew. Chem. Int. Ed. 2006, 45, 1599. (c) Grotjahn, D. B.; Incarvito, C. D.; Rheingold, A. L. Angew.

Chem. Int. Ed. **2001**, *40*, 3884. (d) Halpern, J.; James, B. R.; Kemp, L. W. J. Am. Chem. Soc. **1966**, *88*, 5142. (e) Halpern, J.; James, B. R.; Kemp, A. L. W. J. Am. Chem. Soc. **1961**, *83*, 4097.

- (12) Chandrasekhar, S.; Narsihmulu, Ch.; Sultana, S. S.; Reddy, N. R. Org. Lett. **2002**, *4*, 4399.
- (13) Chandrasekhar, S.; Kiranmai, N. Tetrahedron Lett. 2010, 51, 4058.
- (14) Reddy, A. S.; Chegondi, R.; Chandrasekhar, S. *Proc. Indian Natl. Sci. Acad.* **2015**, *81*, 1171.
- (15) Chandrasekhar, S.; Patro, V.; Chavan, L. N.; Chegondi, R.; Gree, R. *Tetrahedron Lett.* **2014**, *55*, 5932.
- (16) Chandrasekhar, S.; Patro, V.; Reddy, G. P. K.; Gree, R. *Tetrahedron Lett.* **2012**, *53*, 6223.
- (17) General Procedure for Hydration of Terminal Alkynes in PEG-400: To a solution of alkyne (1.0 mmol) in PEG-400/H₂O (4:1) was added [Ru(*p*-cymene)Cl₂]₂ (0.01 mmol), and the mixture stirred at room temperature. Upon completion of the reaction (monitoring by TLC), the reaction mixture was diluted with Et₂O (10 mL), stirred for 10 min, and allowed to stand in an ice-salt bath to solidify the PEG-400. The organic layer was decanted, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue obtained was purified by silica gel flash column chromatography (ethyl acetate– petroleum ether) to give the pure product.

4-(Benzyloxy)butan-2-one (2a): Prepared according to the general procedure and purified by flash chromatography (EtOAc-hexanes, 10%). Yield: 63%; green liquid. ¹H NMR (400 MHz, CDCl₃): δ = 7.56–7.02 (m, 5 H), 4.51 (s, 2 H), 3.73 (t, *J* = 6.3 Hz, 2 H), 2.71 (t, *J* = 6.3 Hz, 2 H), 2.17 (s, 3 H). ¹³C NMR (126 MHz, CDCl₃): δ = 207.2, 138.1, 128.4, 127.7, 73.3, 65.3, 43.8, 30.5. IR (neat): 2925, 2855, 1721, 1458, 1275, 1110, 707 cm⁻¹. HRMS (ESI): *m*/*z* [M + H]⁺ calcd for C₁₁H₁₅O₂: 179.1066; found: 179.1065.

4-Oxopentanoic Acid (2g): Prepared according to the general procedure and purified by flash chromatography (EtOAc–hexanes, 10%). Yield: 92%; colorless oil. ¹H NMR (300 MHz, CDCl₃): δ = 9.25 (s, 1 H), 2.75 (t, *J* = 6.4 Hz, 2 H), 2.61 (t, *J* = 6.4 Hz, 2 H), 2.19 (s, 3 H). ¹³C NMR (101 MHz, CDCl₃): δ = 207.1, 178.5, 37.7, 29.8, 27.8. IR (neat): 2923, 2854, 1708, 1404, 1367, 1165, 555 cm⁻¹. HRMS (ESI): *m*/*z* [M + H]⁺ calcd for C₅H₉O₃: 117.0546; found: 117.0557.

4-Methyl-4-(3-oxobutoxy)cyclohexa-2,5-dienone (2j): Prepared according to the general procedure and purified by flash chromatography (EtOAc–hexanes, 50%). Yield: 78%; dark-green oil. ¹H NMR (300 MHz, CDCl₃): $\delta = 6.72$ (d, J = 10.2 Hz, 2 H), 6.23 (d, J = 10.2 Hz, 2 H), 3.50 (t, J = 6.0 Hz, 2 H), 2.57 (t, J = 6.0 Hz, 2 H), 2.11 (s, 3 H), 1.33 (s, 3 H). ¹³C NMR (75 MHz, CDCl₃): $\delta = 205.4$, 184.1, 150.8, 129.2, 71.5, 59.5, 42.8, 29.6, 25.4. IR (neat): 2927, 1712, 1669, 1389, 1176, 1087, 863, 701 cm⁻¹. HRMS (ESI): m/z [M + H]⁺ calcd for C₁₁H₁₅O₃: 195.1015; found: 195.1019.

2-Methyl-2-(2-oxopropyl)cyclopentane-1,3-dione (2k): Prepared according to the general procedure and purified by flash chromatography (EtOAc-hexanes, 50%). Yield: 81%; colorless oil. ¹H NMR (400 MHz, CDCl₃): δ = 3.10 (s, 2 H), 2.92–2.71 (m, 4 H), 2.00 (s, 3 H), 0.98 (s, 3 H). ¹³C NMR (101 MHz, CDCl₃): δ = 216.4, 206.3, 52.4, 51.7, 34.7, 28.2, 19.3. IR (neat): 2926, 2856, 1718, 1455, 1390, 1183, 1074, 802, 548 cm⁻¹. HRMS (ESI): *m*/*z* [M + H]⁺ calcd for C₉H₁₃O₃: 169.0859; found: 169.0855.

D