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Abstract The ruthenium(II)-catalyzed hydration of terminal alkynes in
PEG-400 to yield methyl ketones through Markovnikov addition of wa-
ter across alkyne is reported.
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Synthesis of methyl ketones from terminal alkynes is a
well studied reaction.1 As summarized in Scheme 1, the ad-
dition of water to alkynes has been reported using metal
catalysts such as gold,2 silver,3 indium,4 platinum,5 rhodi-
um,6 cobalt,7 mercury,8 and iridium.9 Addition of ligands
such as porphyrins7 or trisubstituted phosphines9 to the
catalytic system helps to improve the yield of the methyl
ketone. The presence of a directing group such as a proxi-
mal hydroxyl or acetoxy substituent leads to conversion
into the ketone in higher yields.10 Addition of water in the
presence of alcohol as solvent helps in selective formation
of the ketone over aldehyde through the formation of a ke-
tal, in accordance with Markovnikov’s rule. Special cata-
lysts, such as Ru,11 have been developed for the formation of
aldehydes, which are the disfavored anti-Markovnikov
product. Ru(II) catalysts, in the presence of alcohols, have
been used to synthesize keto esters and this approach
avoids the additional step of ester formation.

These reports describe formation of carbonyl com-
pounds from terminal alkynes but, in many cases, require
strong acids as additives, which limits their application to a
wider variety of substrates. The cost of the metal catalysts
may also be a consideration. Other catalysts use ligands
such as triphenylphosphine, trialkoxy phosphite, porphyrin
or NHC. We wished to carry out the reaction in PEG-400,
which has the advantages that the reagent can be recycled,

ligands are not required to carry out the reaction, and the
use of other solvents can be avoided.

We have used PEG extensively as an environmentally
benign solvent for reactions involving metal catalysts such
as Heck12 and Sharpless dihydroxylation reactions.13 The to-
tal synthesis of centrilobine14 has been achieved in PEG-
400 and methodologies have been developed for the syn-
thesis of pyrrole15 and 3-indole derivatives.16 In a continua-
tion of our work towards reactions in PEG-400, we decided
to explore the hydration of terminal alkynes using di-
chloro(p-cymene)ruthenium(II) dimer.

As a first step, to explore the reaction of terminal alkyne
with dichloro(p-cymene)ruthenium(II) dimer in PEG-400,
3-butynol benzyl ether (1a) was used as substrate (Scheme
2). The reaction led to the formation of 4-O-benzyl-2-buta-
none (2a) in 63% yield. Analytical data confirmed the for-
mation of 2a (Table 1).17 With this unusual result, given that
Ru (II) was expected to yield the aldehyde, we explored

Scheme 1  Hydration of terminal alkynes
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more scaffolds to determine whether there would be con-
sistent ketone formation. Thus, diketone 1b, O-benzoyl-3-
butynol (1c), N-propynyl phthalimide (1d), aryl alcohol 1e,
and cyclohexanedione 1f were reacted using dichloro(p-cy-
mene)ruthenium(II) dimer in PEG-400 and the resulting
methyl ketones 2b–f were obtained in yields of 58 to 89%.
To expand the substrate scope, alkynoic acids 1g, 1h, and 1i
were reacted to isolate the keto acids 2g–i directly in 86–
92% yields, unlike previous reports where acids were con-

verted into esters. Substrates 1j, 1k, and 1l also gave the
corresponding methyl ketones 2j–l in good yields. Choles-
terol alkyne ester 1m was converted into 2m in 58% yield
and sugar ether 1n gave 2n in 50% yield. Thus, we have de-
veloped mild conditions for the synthesis of methyl ketones
for a variety of substrates without affecting other function-
alities present in the molecule, by using Ru(II) catalyst. The
only substrates that failed to generate the methyl ketones
were arylalkynes.

Table 1  Ru(II)-Catalyzed Hydration of Terminal Alkynesa,b

Entry Alkyne Time (h) Product Yield (%)

1 1a 24 2a 63

2 1b 12 2b 78

3 1c 24 2c 58

4 1d 24 2d 88

5 1e 24 2e 73

6 1f 12 2f 89

7 1g 12 2g 92

8 1h 12 2h 86
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Table 1 (continued)

Scheme 2  Initial attempts

After studying various scaffolds for substrate specificity,
we investigated the activity of the catalyst for recyclability
(Table 2). Thus, 4-pentynoic acid was used as a substrate
and the catalyst was recycled, the second run gave good
yield (83%) and the third gave a reasonable yield (70%);
however, the yields continued to drop subsequently, possi-
bly due to loss of the catalyst during workup. The product
obtained in the repeated runs was identical in all respects
with the first run product. Thus, modification of the Ru cat-
alyst to make it less soluble in organic solvents, so that re-
cyclability is efficient, is of possible interest.

Table 2  Recyclability of Ruthenium(II) Catalyst in PEG-400

In conclusion, a novel, mild and high yielding methodol-
ogy for conversion of alkyne acids into keto acids has been
developed. The methodology can be extended to ethers, es-
ters, and carbonyl containing compounds and to scaffolds

 9 1i 12 2i 88

10 1j 12 2j 78

11 1k 12 2k 81

12 1l 12 2l 80

13 1m 48 2m 58

14 1n 48 2n 50

a Reactions were carried out with 1 (1 mmol) in 4:1 mixture of PEG 400/H2O (0.5 M).
b Isolated yield after column chromatography.
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such as steroidal and carbohydrate derivatives. This meth-
odology avoids the use of strong acids or ligands.
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