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Summary of main observation and conclusion  A new dehydrative glycosylation reaction has been established by capitalizing on the comproportionation 
reaction of 2-aryl-1,3-dithiane 1-oxides promoted by triflic anhydride (Tf2O). By wedding the high potency of thiophilic promoter system with the step 
efficiency of dehydrative glycosylation, this reagent underwent facile intermolecular oxothio acetalization with C1-hemiacetal donor to install a temporary 
leaving group, rendering a transient electrophilic center at the remote site to the anomeric position. The sulfenyl triflate tethered at the terminus 
concomitantly activated the sulfide intramolecularly to afford the oxocarbenium ion, thereby facilitating the title glycosylation. Aside from accommodating 
broad range functional groups and inactive hemiacetal substrates, present activation protocol also proved expedient for 1,3-diol protection. Most 
importantly, this method further provided a fresh perspective for the application of sulfur chemistry to carbohydrate chemistry. 

 

Background and Originality Content 
The complex molecular framework of oligosaccharides and 

glycoconjugates presents an enduring challenge for the pursuit of 
increasingly efficient glycosylation methods in carbohydrate 
chemistry.[1] By virtue of elegant glycosylation strategies developed 
in the past century, Ye’s recent landmark synthesis of 
arabinogalactan, a 92-mer polysaccharide, has endorsed the 
tremendous achievements in the odyssey of complex carbohydrate 
synthesis.[2] In this exemplary synthesis, sulfenyl triflates (RSOTf) 
generated in situ from a combination of sulfenyl chloride and silver 
triflate was applied sturdily as thioglycoside activation reagent.[3] 
Note-worthily, the highly reactive sulfenyl triflate species were also 
yielded upon the activation of glycosyl sulfoxide with triflic 
anhydride (Tf2O) in Kahne glycosylation,[4] which could compete 
with triflic anhydride to activate sulfoxide donor.[5] The 
nondiscriminatory sulfide activations by RSOTf were also cited, 
which hampered the efficiency of glycosylation particularly for 
thioglycoside acceptors.[6] The intricate attribute of glycosyl 
sulfoxide activation mode have stymied its broad applications 
albeit the otherwise high potency. In continuation with our 
research interests to seek new reaction mode of sulfoxide 
chemistry in forging glycosidic bonds,[7] we surmised that this 
potent thiophilic glycosylation promoter system could be 
harnessed for one-pot sequential sulfoxide and sulfide activation 
as novel glycosidic bonds construction strategy given meticulous 
control. This conjecture was galvanized by a report of Kuhn et al. in 
1961 which featured facile cleavage of S-oxide of mannosyl 

thioacetal 1a to the D-mannose and diethyldisulfide 2a (Scheme 
1a).[8] A more recent example was documented by Takahashi et. al 
in an elegant synthesis of 2,3,6-trideoxy glycosides 4, derived from 
an intramolecular cyclization of 1b and subsequent intermolecular 
glycosylation with in situ generated thioglycosides A and 
electrophilic methyl sulfenyl triflate (MeSOTf) (Scheme 1b).[9] Along 
with formation of 2,3,6-trideoxy glycosides 4, dimethyldisulfide 2b 
was assumed to be a co-product. 

Scheme 1 Comproportionation reactions of dithioacetal monosulfoxide 
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While conventional glycosylation reactions require exhaustive 
manipulation and activation of anomeric functional leaving 
groups,[10] the dehydrative variant which was first reported in 
1893,[11] authorizes the direct activation of C1-hemiacetals. The 
obviation to install C1-leaving groups and isolation of glycosyl 
donor intermediates, streamline the tedious multi-glycosylation 
sequences.[12] Seemingly stands at marked advantage, the 
dehydrative glycosylation is plagued with substrate-dependent 
reactivity and selectivity issues which stem from higher stability of 
C1-hemiacetals thus requiring harsh activation conditions; 
furthermore, preferential self-condensation often precedes to 
form 1,1-linked disaccharides. Nonetheless, Gin,[13] Kobayashi,[14] 
Kim,[15] Panza,[16] Bennett,[17] Walczak,[18] Kancharla[19] and Taylor[20] 
et al. have respectively implemented intelligent refinements for 
accomplishing a suite of representative dehydrative glycosylation 
protocols. Drawing inspiration from these antecedent successes, 
our pursuit of novel dehydrative glycosylation commenced with the 
design of molecules (1c) containing dithioacetal monosulfoxide 
moiety as activation reagents. An abbreviated working mechanism 
is postulated herein (Scheme 1c): Selective activation of sulfoxide 
in 1c by triflic anhydride (Tf2O) could form sulfonium bistriflate (B) 
to induce intermolecular acetalization with glycosyl donor. This 
temporary anomeric leaving group with terminally tethered 
sulfenyl triflate moiety (C, Scheme 1c) would incite intramolecular 
sulfide activation, thus primes the glycosyl donor for glycosylation. 
In the process, the activation reagent 1c would comproportionate 
to inert aldehyde 7 and disulfide 2c. 

Results and Discussion 
As proof of concept, various dithioacetal monosulfoxide 

dehydrative reagents (1c-h) were prepared employing an efficient 
two-step procedure. A typical synthetic way exemplified by the 
eighty-grams scale synthesis of 2-phenyl-1,3-dithiane 1-oxide 1ca 

was outlined in Scheme 2.[21,22] Enlisting armed glucosyl 5a as 
glycosyl donor and cyclohexanol 11a as acceptor (Scheme 3), these 
reagents were examined adopting a pre-activation procedure;[3g-

j,23] wherein Tf2O, 1c-h, 5a and 2,6-di-tert-butyl-4-methylpyridine 
(DTBMP) were pre-mixed prior to the addition of acceptor 11a. 
While non-pre-activation procedure generally provided much 
lower yield of 6a with the recovery of hemiacetal 5a. Among the 
examined reagents, 1ca proved to be the optimal which provided 
6a in 88% yield. The dithioacetal monosulfoxides with smaller (1d) 
or larger rings (1e) were inefficient, acyclic 1f produced the desired 
product with 68% yield. It should be noted that small amount of 
self-condensed product 12 was obtained in the cases of 1d and 1f. 
By replacement of isopropyl group of 1f with phenyl ring, reagent 
1g generated much lower yield of 6a however increased yields of 
12 and recovered 5a. 1,3-oxathine 3-oxide 1h was then assessed. 
Unfortunately, large amount of 12 was isolated, possibly due to 
intermediate E with an anomeric acetal functional group was 
unstable[24] in the pre-activation stage, it was activated under the 
acid conditions to form the oxocarbenium which reacted with the 
unreacted 5a quickly. These results implied that intermediate C 
played a crucial role in the dehydrative reactions. This intermediate 
should possess certain stability in low temperature in the pre-
activation stage but enough activity when warmed up. Finally, after 
carefully examination of the reaction conditions (see ESI), the 
optimal conditions for active C1-hydroxy glycosyl donors were then 
concluded as follows: after addition of Tf2O (1.2 equiv) to the 
mixture of hemiacetal 5a, sulfoxide 1ca (1.2 equiv), DTBMP (1.5 
equiv) and 4Å MS in CH2Cl2 at -78 °C, the reaction mixture was 
stirred for 10 min before addition of acceptor 11a (1.5 equiv). The 
reaction temperature was maintained for 20 min before warming 
up to 0 °C and allowed to stir for 1 h. 

Scheme 2 Preparation of 2-phenyl-1,3-dithiane 1-oxide 1ca 

i) (PhO)2P(O)OH (10, 10 mol%)   
H2O2 (30%, 1.2 equiv)    
CHCl3, r.t.

HS

HS

12 W Blue LEDs
MeCN, air, r.t.

S

SPh
9

 
PhCHO

(7a, 1.2 equiv)

1ca, 86.0 grams
73% (two steps)

8
Ph S

SO

ii) recrystallization

 

Scheme 3 Optimization of reaction conditions for active hemiacetal donorsa,b 

O
BnO

BnO

OBn

BnO
OH

5a

1c-h 
(1.2 

 
equiv)

Tf2O (1.2 equiv)
DTBMP (1.5 equiv)

4Å MS, CH2Cl2
-78 °C to 0 °C

O
BnO

BnO

OBn

BnO
OCy + O

BnO
BnO

BnO

BnO
O

2

6a 12

S

SO
S

S
O

S
Ph

Ph
S

O

O

S
O

1ca 

6a: 88%, 12: trace
1d 

6a: 39%, 12: 14%
43%c

1e 

6a: 16%, 12: trace
68%c

1f 

6a: 68%, 12: 19%
12%c

1g 

6a: 34%, 12: 20%
40%c

1h 

6a: 49%, 12: 41%

S

S

S

S
O O

+

OH

11a
1.5 equiv

OO

Ar
O

S OTf

E

 

This article is protected by copyright. All rights reserved.



 

 
Chin. J. Chem. 2019, 37, XXX－XXX © 2019 SIOC, CAS, Shanghai, & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.cjc.wiley-vch.de  

Dehydrative Glycosylation Enabled by a Comproportionation Reaction of 2-Aryl-1,3-Dithiane 1-Oxide Chin. J. Chem. 

a General procedure: Tf2O was added to the mixture of hemiacetal 5a, 
sulfoxide 1c-h, DTBMP and 4Å MS in CH2Cl2 at -78 °C, after 10 min, acceptor 
11a was added and stirred for additional 20 min, then warmed up to 0 °C and 
stirred for 1 h. b Isolated yield. 6a were obtained as anomeric mixtures. c 
Recovered yield of 5a. 

Scheme 4 Substrate scope of active donors 
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a Yield with Gin’s condition: 1. Tf2O (1.4 equiv), 5b (1.0 equiv), Ph2SO (2.8 
equiv), PhCH3/CH2Cl2 (3:1, v:v), -78 °C (10 min), then -40 °C (1 h); 2. 2-
Chloropyridine (5.0 equiv), 11b (1.6 equiv), PhCH3, -40 °C (30 min), then 0 °C 
(25 min) and rt (4 h). 

To illustrate the scope of current dehydrative glycosylation 
method, a variety of hemiacetal donors and acceptors were 
examined with sulfoxide 1ca as activation reagent and hemiacetal 
donors as the limiting substrates (Scheme 4). Various acceptors 
acted as competent nucleophiles under this protocol. It is worth-
mentioning that: 1) superarmed hemiacetal donors with C-2 
neighbouring participation groups reacted smoothly to afford 
disaccharides 6c-e and 6i in good to excellent yields with absolute 
1,2-trans stereo-control. Interestingly, when subjecting 5b to Gin’s 
dehydrative conditions,[13a] extremely low yields of 6c was 
observed (12%). This result highlighted that the present method 
would be an important supplementary to Gin’s conditions in terms 
of acetate protected substrates which are more commonly used in 
oligosaccharide assembly compared to benzoate ones. 2) 
galactopyranosyl donor with remote participation group[25] or 
benzylidene group, and rhamnopyranoside with 2,3-acetonide 

group coupled with GluO-4 or GluO-2 acceptors in good yields with 
excellent α-selectivity (6f-h). 3) the lower reactivity of multi-deoxy 
sugars with electron-withdrawing groups was successfully endured 
to furnish the desired disaccharide 6j and 6k in reasonable yields. 
4) various functional groups including chloride (6g), azide (6i), p-
nitrobenzenesulfonyl amide (6j), lactone (6k) as well as acid-
sensitive ketal (6e, 6h and 6j) and acetal (6g) groups were well 
tolerated under present reaction conditions. 5) most prominently, 
the orthogonality established with thioglycoside (6e), OPTB 
glycoside (6d)[7a] and SPTB glycoside (6f)[7b] should augur well for 
downstream glycosidic bond construction. 

Scheme 5 Optimization of reaction conditions for peracylated hemiacetal 
donors 
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a 1ca (1.2 equiv), Tf2O (1.2 equiv), DTBMP (1.5 equiv), -78 to 0 °C. b DTBMP 
(1.5 equiv), 11b (2.0 equiv). c Yield with Gin’s conditions: 1. Tf2O (1.4 equiv), 5i 
(1.0 equiv), Ph2SO (2.8 equiv), PhCH3/CH2Cl2 (3:1, v:v), -78 °C (10 min), then -
40 °C (1 h); 2. 2-Chloropyridine (5.0 equiv), 11b (1.6 equiv), PhCH3, -40 °C (30 
min), then 0 °C (25 min) and rt (4 h). 

In spite of the satisfactory results obtained for the armed 
hemiacetal donors and even the peraceylated multi-deoxy sugars, 
extension of these conditions to peracetylated rhamnose 5i 
provided 6l only in 63% yield with moderate selectivity (Scheme 5). 
This selectivity was deemed exceptional given existence of 
neighboring group participation effect generally instills high level of 
1,2-trans selectivity. To suppress the speculated formation of 
orthoester by-product due to the presence of C-2 acetate group 
under non-acidic conditions, the amount of 1ca and triflic 
anhydride were increased to 1.5 equiv and only 1.0 equiv of base 
was used to uphold the acidity of the reaction system. Alongside 
with higher pre-activation temperature at -40 °C, the product yield 
could be promoted up to 83% but at the expense of attenuated 
selectivity (α:β ratio of 2.5:1). We then considered to permutate 
electronic properties of the aryl 1,3-dithiane 1-oxides core by 
introducing varied substituents on the phenyl ring (1cb-1ch). While 
all candidates mediated the delivery of cross coupled product 6l in 
good to excellent yields; the selectivity engendered by the 1,3-
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dithiane 1-oxides with electron rich phenyl groups outperformed, 
especially 1cg and 1ch which gave forth exclusive α-selectivity. 
Applying 1cg as activation reagent, further increment of the 
amount of DTBMP and 11b produced 6l in 90% yield. Notably, only 
41% yield of 6l was obtained when employing Gin’s conditions. 

We conjectured that the dramatically increasing ofα-
selectivity by 1cg might be resulted from the participation of in situ 
released p-anisaldehyde. To verify this hypothesis, a control 
experiment was carried out with 1ca as dehydrative reagent. Upon 
pre-activation of 5i and 1ca with Tf2O, 1.5 equiv of p-anisaldehyde 
was then added into the reaction mixture. With this modification, 
the α to β ratio of 6l was exactly augmented from 2.5:1 to 8.2:1. 
This tendency was also observed when glycosydation of 5a with p-
anisaldehyde as additive. Given the electron enrichment of p-
anisaldehyde, this aldehyde possibly acted as an exogenous 
nucleophile to modulate the selectivity.[26] 

Scheme 6 The role of p-anisaldehyde 
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With this improvised reaction condition in hand, several 
inactive peracylated donors were examined as outlined in Scheme 
7. In addition to L-rhamnose, peracetylated D-rhamnose, D-
quinovose and D-fucose were amenable for activation to furnish 
the corresponding disaccharides in good yields with absolute 1,2-
trans stereo-control (6m-p). The same conditions applied to 
peracetylated glucose formed 6q in exclusive β-selectivity, and the 
modest reaction yield could be augmented with higher pre-
activation temperature of -20 °C. 

Scheme 7 Substrate scope for inactive donors 
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a DTBMP (1.0 equiv), 11b (1.5 equiv), -20 to 0 °C. 

Scheme 8 Synthesis of pentamannan 15 
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As a final endeavor to vouch for the utilitarian potential of 
current protocol, a synthesis towards a protected form of 
pentamannan core 15 of HIV-1 envelop protein gp120 was 
initiated.[27] As shown in Scheme 8, our synthesis commenced from 
the cross coupling of 11o with two molecules of hemiacetal 5n 
activated by the combination of 1ca and Tf2O. Having secured 
trisacharide 13 in 78% yield, removal of the acetate groups before 
another title coupling with two 5n units auspiciously afforded the 
pentamannan 15 in 45% overall yield in three steps. 
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Figure 1 Identification of intermediate C’ and leaving groups by 1H NMR. a 
1H NMR of reaction mixture of 5i, 1cg, DTBMP and Tf2O at rt. b 1H NMR of 
7g. c 1H NMR of 2c. d HMBC spectrum of reaction mixture of 5i, 1ca, DTBMP 
and Tf2O at -40 °C (for details, see: ESI). 

Mechanism wise, the reaction was postulated to proceed 
through a sequential activation of sulfoxide and sulphide; and in 
the process, the activation reagent dithiane oxides 1c 
comproportionates to corresponding aryl aldehydes 7 and 1,2-
dithiolane 2c. Whilst the aldehydes were indeed isolated almost 
quantitatively in above reactions, isolation of 1,2-dithiolane was 
futile owing to its low polarity, high volatility and instability.[28] To 
validate the occurrence of this small molecule, the reaction was 
monitored in-situ by 1H NMR employing coupling reaction of 5i 
with methyl glycolate to produce 6m (Figure 1). Expectedly, the 
formation of 4-methoxy-benzaldehyde (7g) and 1,2-dithiolane (2c) 
in quantitative were clearly evident in 1H NMR spectrum.[29] This 
evidence strongly supposed the proposed mechanism. Additionally, 
low temperature NMR studies were carried out to capture the 
proposed intermediate C’ when 5i and 1ca was activated with Tf2O 
at -40 °C. In the 1H NMR spectrum, typical singlet located at 5.861 
ppm was observed which could be attributed to the thioacetal 
proton (Ha) of intermediate C’. Correlations of this signal to the 

aromatic carbon and anomeric carbon (C1) in the HMBC spectrum 
were also observed. This observation suggested that intermediate 
C’ really exist, consequently, endorsed the proposed mechanism 
again. 

Scheme 9 Protection of diol with 1ca 
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When 1ca was introduced as protection reagent for 1,3-diols 
(Scheme 9), the dihydroxy group of 16 was favourably protected as 
benzylidene acetal 17 in the presence of Tf2O and DTBMP. This 
reaction was reckoned to mirror the dehydrative glycosylation 
pathway. Activation of 1ca with Tf2O generated a thionium ion 
possessing sulfenyl triflate functionality. Attachment of one 
hydroxyl group of 16 to thionium ion furnished the oxothioacetal 
species; subsequent intramolecular activation of sulfide with 
sulfenyl triflate produced oxonium which induced the cyclization to 
form the benzylidene acetal 17. This reaction evinced the reaction 
mechanism of dehydrative glycosylation mediated by the 1,3-
dithiane 1-oxide, but also availed as new alternative for diol 
protection under mild conditions.[30] 

Conclusions 
In conclusion, a new strategy for dehydrative glycosylation was 

delineated employing an unprecedented activation reagent, 2-aryl-
1,3-dithiane 1-oxide and Tf2O system. The activation of sulfoxide 
moiety of the reagent with Tf2O initiated the installation a 
temporary anomeric leaving group bearing both active sulfenyl 
triflate and sulfide moieties at the C1 position. Intramolecular 
activation of the thus-formed oxothio acetal group by sulfenyl 
triflate facilitated the generation of glycosyl oxocarbenium ion 
susceptible for glycosidic bond formation. The activation reagent 
concomitantly transformed to neutral small molecules: an 
aldehyde and a 1,2-dithilane, which eased the isolation and 
purification steps. Wide range of substrates including inactive 
hemiacetals undertook the chemistry well. Compatibility of 
variegated functional groups highlighted the wide applicability of 
this protocol. Moreover, the method was pertinent for protection 
of diols to acetals warranted by the mild reaction conditions. 

Experimental 
Large scale preparation of 2-phenyl-1,3-dithiane 1-oxide 1ca: 
Benzaldehyde (7a, 67.6 mL, 0.665 mol, 1.2 equiv) and 1,3-
dimercaptopropane (8, 55.7 mL, 0.554 mol, 1.0 equiv) were 
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dissolved in MeCN (185 mL, C = 0.3 mol/L) and irradiated with 12 
W Blue LEDs under air at room temperature for 24 h. After 
consumption of 1,3-dimercaptopropane, the mixture was 
concentrated in vacuo to give dithiane 9 as crude products. To a 
stirred solution of the above crude product (1.0 equiv) and 
diphenyl phosphate (10, 13.9 g, 0.055 mol, 10 mol%) in CHCl3 (185 
mL, C = 0.3 mol/L) was added 30% H2O2 (66.8 mL, 0.665 mol, 1.2 
equiv) at 0 °C. The mixture was stirred at room temperature for 5 
h and extracted with EtOAc. The organic phase was washed with 
saturated Na2S2O3, NaHCO3 and brine, dried over anhydrous 
Na2SO4, concentrated in vacuo, and purified by recrystallization 
with petroleum ether/CH2Cl2 to give 1ca (86.0 g, 73%) as white 
solid. 
General procedure for the dehydrative glycosylation: Tf2O (1.2-
1.5 equiv) was added to the mixture of hemiacetal donor 5 (1.0 
equiv), sulfoxide 1ca (1.2-1.5 equiv), DTBMP (1.0-1.5 equiv) and 4Å 
MS (100 wt%) in CH2Cl2 (C = 0.1 mol/L) at -78 °C or -40 °C. After the 
mixture was stirred for 10 minutes, acceptors (1.5-2.0 equiv) in 
CH2Cl2 (0.2 mL) was added dropwise. The resulting mixture was 
stirred at this temperature for additional 20 minutes, then warmed 
up to 0 °C and stirred for 1 h. 
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