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Site-Selective, Remote sp3 C–H Carboxylation Enabled by the 
Merger of Photoredox and Nickel Catalysis 
Basudev Sahoo,‡ Peter Bellotti,‡ Francisco Juliá-Hernández, Qing-Yuan Meng, Stefano Crespi,* 
Burkhard König* and Ruben Martin* 
Abstract: A photoinduced carboxylation of alkyl halides with CO2 at 
remote sp3 C–H sites enabled by the merger of photoredox and Ni 
catalysis is described. This protocol features a predictable reactivity 
and site-selectivity that can be modulated by the ligand backbone. 
Preliminary studies reinforce a rationale based on a dynamic 
displacement of the catalyst throughout the alkyl side-chain. 

Metal-catalyzed reductive carboxylation reactions of organic 
(pseudo)halides with abundant and inexpensive carbon dioxide 
(CO2)[1] have provided new vistas for preparing industrially-
relevant carboxylic acids in the absence of stoichiometric 
organometallic reagents.[2] Although this area of expertise has 
reached remarkable levels of sophistication, the vast majority of 
sp3 carboxylation reactions primarily rely on ipso-CO2 insertions 
at prefunctionalized sites (Scheme 1, path a).[3,4]  
 

 
 

Scheme 1. Merging Ni and photoredox catalysts for sp3 C–H carboxylation. 

From both a conceptual and practical standpoint, the ability to 
expand the boundaries of CO2 fixation into unactivated sp3 C–H 
sites would be a particularly attractive scenario.[5] Unfortunately, 
the available sp3 C–H carboxylation portfolio indicates that a 
vast number of daunting challenges remain.[6] At present, 

photochemical techniques[7] remain confined to the activation of 
sp3 C–H bonds adjacent to heteroatoms or aromatic rings, 
invariably requiring high-intensity UV-irradiation (Scheme 1, path 
b).[8] The latter is particularly problematic given the wide number 
of functional groups that absorb in the UV region, leading to 
deleterious side-reactions arising from photoexcitation of the 
substrate itself, thus reinforcing the need for a sp3 C–H 
carboxylation technique with improved flexibility, generality and 
practicality. A significant step-forward in sp3 C–H carboxylation 
has been recently reported by our group within the context of 
chain-walking reactions; however, stoichiometric amounts of 
metal salts are inevitably required,[4d],[9] thus hampering the 
implementation of these processes in industrial endeavors.[10] 
Prompted by our interest in nickel catalysis and visible light-
induced processes,[3b-g,4b-d,9] we wondered whether the merger of 
these two techniques might enable a CO2 insertion at remote sp3 
C–H sites in the absence of stoichiometric metal salts, thus 
offering an unrecognized opportunity in metallaphotoredox[11,12] 
and carboxylation reactions.[1] Herein, we report the successful 
realization of this goal by using alkyl halides as precursors 
(Scheme 1, bottom). The protocol is characterized by a site-
selectivity pattern that can be modulated by a subtle modification 
of the ligand backbone, thus resulting in the functionalization at 
benzylic or even at primary sp3 C–H sites, arguably the 
strongest C–H bonds in the alkyl series. Preliminary mechanistic 
studies suggest that a dynamic displacement of the nickel 
catalyst throughout the hydrocarbon side chain via Ni(II) 
intermediates comes into play.[13] 
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Scheme 2. Optimization of the reaction conditions. 1a (0.20 mmol), (L1)NiBr2 
(5 mol%), 4-CzIPN (1 mol%), HEH (1.5 equiv), K2CO3 (1.0 equiv), H2O (5.0 
equiv), CO2 (1 bar), Blue-LEDs in DMF (0.1 M) at 25 ºC for 5 h. [a] Yields 
determined by NMR using 1,3,5-trimethoxybenzene as standard. [b] Isolated 
yield, average of two independent runs. 4-CzIPN: 2,4,5,6-tetra(carbazol-9-yl)-
isophthalonitrile; DMF = dimethylformamide; Cz = carbazole; HEH = diethyl 
1,4-dihydro-2,6-dimethyl-3,5-pyridinedicarboxylate. 

Our investigations began by studying the Ni-catalyzed 
carboxylation of homobenzylic bromide (1a) with CO2 (1 bar) 
(Scheme 2). After systematic evaluation of all reaction 
parameters,[14] we found that a protocol based on (L1)NiBr2, 
organic photocatalyst 4-CzIPN, K2CO3 and Hantzsch ester (HEH) 
as terminal reductant provided the best results, giving rise to the 
targeted carboxylic acid in 56% isolated yield with a 90:10 
branched:linear selectivity (entry 1). As initially anticipated, 
subtle modifications on the ligand backbone resulted in a 
markedly decrease in reactivity; while the inclusion of 
substituents adjacent to the nitrogen atom was shown to be 
critical for success,[15] it became apparent that aryl or alkyl 
groups at C4 and/or C7 had a deleterious effect in both 
selectivity and reactivity (entries 2-6). Intriguingly, the utilization 
of desiccants led to lower yields of 2a (entry 9), thus revealing a 
non-innocent role exerted by water.[4d] Unlike related Ni-
catalyzed carboxylations of organic (pseudo)halides,[3] the 
presence of additives such as LiBr was not necessary for the 
reaction to occur (entry 10); note, however, that K2CO3 provided 
better results than Cs2CO3 (entry 11), showing the influence that 
the escorting cation might have on reactivity. As anticipated, 
control experiments in the absence of either (L1)NiBr2, 4-CzIPN 
or light resulted in no conversion to 2a (entry 12). 
 

 

Scheme 3. Benzylic sp3 C–H carboxylation by merging Ni & photoredox 
catalysis. Conditions: see Scheme 2 (entry 1); yields of isolated products, 
average of two independent runs. [a] b:l = 90:10. [b] 1.0 mmol scale. [c] b:l = 
85:15. [d] b:l = 93:7. [e] Isolated as methyl ester. [f] b:l = 80:20. For additional 
substrates, see SI.[14] 

With optimized conditions in hand, we next set out to explore the 
generality of our light-induced Ni-catalyzed carboxylation at 

benzylic sp3 C–H sites. As shown in Scheme 3, similar reactivity 
and site-selectivity were obtained for a plethora of homobenzyl 
bromides independent of whether they possessed electron-rich 
or electron-poor substituents on the aryl ring. It is worth noting, 
however, that electron-donating groups provided the best yields 
of the series (2e, 2g, 2h).[16] As shown for 2a, the reaction can 
be scaled-up without significant erosion in yield or site-selectivity. 
Importantly, phenols (2g), amides (2h), ketones (2j) or esters 
(2k) do not interfere with productive carboxylation at the benzylic 
sp3 C–H site. Phenol (2g) gave higher yields, most likely through 
Lewis-acidic assistance of K+ during the CO2-insertion (Scheme 
3, middle).[17] Albeit in lower yields, we found that our protocol 
can be extended to electron-rich unprotected indoles (2l) or 
secondary homobenzylic bromides (2m). The latter result is 
particularly interesting, particularly if one takes into consideration 
the inherent structural limitations observed in otherwise related 
carboxylation of benzyl halides possessing a-substituents other 
than methyl groups.[3f-h] 

 

 

Scheme 4. Catalytic carboxylation at remote sp3 C–H sites by merging Ni & 
photoredox catalysis. Conditions: 3 (0.25 mmol), (L7)NiBr2 (10 mol%), 4-
CzIPN (1 mol%), HEH (2.0 equiv), Rb2CO3 (2.0 equiv), CO2 (1 bar), DMF (0.08 
M), Blue-LEDs in DMF at 10 ºC for 20 h; yields of isolated products, average 
of two independent runs. [a] TBAI (1.0 equiv) as additive. [b] Obtained upon 
hydrolytic workup using methyl 5-bromohexanoate. Regioconvergent 
photocarboxylation of n-heptane: Br2 (0.25 mmol), MnO2 (0.50 mmol) in n-
heptane (1.25 mL) followed by the conditions highlighted above for 4a. 

While the results summarized in Scheme 3 clearly illustrated the 
feasibility of a benzylic sp3 C–H carboxylation in the absence of 
metal reductants, there was a reasonable doubt on whether our 
protocol could be extended to carboxylation events at distal, 
primary sp3 C–H sites. Undoubtedly, the successful realization of 
such a void terrain would unlock new fundamental reactivity 
within the metallaphotoredox arena[11.12] while expanding our 
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repertoire when activating strong primary sp3 C–H bonds in the 
presence of a priori more reactive sites.[18] As expected, the 
ligand had a non-negligible impact on both efficiency and site-
selectivity.[15] Indeed, the reaction of 2-bromoheptane (3a) under 
the optimized conditions of Scheme 3 based on a Ni/L1 regime 
resulted in traces, if any, of 1-octanoic acid (4a). However, a 
protocol based on Ni/L7 furnished 4a in 48% yield and with 
exquisite site-selectivity (99:1).[19] Importantly, while an exquisite 
site-selectivity was found for a Ni/L9 protocol based on Mn as 
terminal reductant,[9] a Ni/L9 photochemical event resulted in a 
significant erosion in yield and site-selectivity, thus showing the 
subtleties of our photocatalytic chain-walking carboxylation.[14] 
As shown in Scheme 4, a variety of linear carboxylic acids could 
be prepared from a range of alkyl bromides in excellent site-
selectivities via formal [1,n]-migration of the Ni atom throughout 
the side chain. Although modest yields, the outcome of our 
remote Ni/photoredox carboxylation at primary sp3 C–H sites 
should be assessed against the challenge that it addresses. 
Particularly noteworthy was the site-selectivity pattern observed 
for 4g-4j, with CO2 insertion occurring at the strongest, primary 
sp3 C–H sites. Given that primary alkyl radicals are beyond 
reach via hydrogen-atom transfer (HAT),[20] these results 
constitute an orthogonal gateway with existing UV-mediated 
carboxylations occurring at weaker benzylic sites or adjacent to 
heteroatoms via open-shell species (Scheme 1, path b).[8] 
Equally interesting was the functional group compatibility in the 
presence of esters (4d), nitriles (4f), ketones (4j), alkyl chlorides 
(4e) or amides (4i). Notably, the alkyl bromide derived from a 
nonsteroidal anti-inflammatory drug such as Nabumetone 
delivered 4h in 99:1 ratio.[21] Similarly, 4b was obtained as a 
single regioisomer, indicating that the reaction took place at the 
most accessible sp3 C–H site. Although competitive C3-
carboxylation events might occur with electron-rich indoles,[22] 
this was not the case (4g). Particularly rewarding was the ability 
to convert n-heptane into 4a (l:b = 99:1) via bromination/chain-
walking photocarboxylation (Scheme 4, bottom), standing as a 
testament to the prospective impact of our protocol to repurpose 
chemical feedstocks (alkanes and CO2) in a controllable fashion. 
 

 
Scheme 5. Mechanistic rationale for the photocarboxylation of 3a.  

Although unraveling the underpinnings of our Ni/photoredox 
chain-walking carboxylation at sp3 C–H sites should await further 
investigations, we decided to shed light into the mechanism via 
combined experimental and theoretical studies (Scheme 5).[14] 
Synergistic spectroelectrochemical measurements and in-situ 
UV-vis spectroscopy on (L1)NiBr2 and (L7)NiBr2 revealed that 
low-valent Ni(I) and Ni(0) species are formed during light 
irradiation in the presence of 4-CzIPN and Hantzsch ester.[14,23] 
The assumption that the benzylic carboxylation featured a rather 
facile b-H elimination from cationic Ni(II) species was 
experimentally corroborated by detecting styrenes in small 
amounts, the concentration of which decays to zero after 
consumption of the alkyl bromide.[14] In addition, olefins were not 
detected in the absence of Ni/L1 or Ni/L7, arguing against base-
promoted E2-elimination/olefin carboxylation event. DFT 
calculations confirmed that species B–D had similar energy and 
that these species coexist in rapid equilibrium via rather facile b-
H elimination from cationic Ni(II) intermediates.[24,25] Importantly, 
DFT calculations revealed a rather unfavorable CO2 insertion for 
Ni(II) species D, either via outer- or inner-sphere mechanisms, 
reinforcing the notion that CO2 takes place at a Ni(I) center (E) 
generated upon single electron transfer (SET), thus giving rise to 
a Ni(I)-carboxylate F.[26] A final SET can provide 4a-I while 
recovering back the propagating Ni(0)/L7 (A) species. While the 
activation energy for the SET reduction could not be obtained 
via DFT calculations, the absence of a kinetic Isotope effect and 
the preferential regioselectivity observed at remote primary sp3 
C–H sites (4a-I vs 4a-I') suggests that the formation of Ni(I) 
species might be the rate-determining step of the reaction. A 
similar rationale can be drawn for homobenzylic bromides, with 
an energetic profile that favors CO2 incorporation at benzylic sp3 
C–H sites.[14] In this case, the selectivity at benzylic sites can be 
explained by both kinetic and thermodynamic grounds.[14] 
 
In summary, we have described the merger of photoredox and 
Ni catalysis as a platform for enabling carboxylation at remote 
sp3 C–H sites under atmospheric pressure of CO2 while 
obviating the need for stoichiometric metal reductants. The 
salient features of this method are the mild conditions and a site-
selectivity pattern that can be modulated by the nature of the 
ligand employed, offering an unrecognized opportunity in the 
metallaphotoredox arena for the activation of sp3 C–H bonds. 
Further work along these lines is currently in progress. 
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The merger of Ni and photoredox catalysis enables a CO2 insertion at remote sp3 
C–H sites under visible light irradiation and in the absence of metal reductants. The 
salient features of this method are the mild conditions and a site-selectivity pattern 
that can be modulated by subtle modifications of the ligand backbone, offering an 
unrecognized opportunity in the metallaphotoredox arena and a complementary 
reactivity mode to existing functionalization techniques at remote sp3 C–H sites.  
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