471

Facile Generation of Alkoxy Radicals from N-Alkoxyphthalimides

Sunggak Kim,* Tai Au Lee, and Yukwan Song

Department of Chemistry, Korea Advanced Institute of Science and Technology, Taejon 305-701, Korea

E-mail:skim@sorak.kaist.ac.kr

Received 27 February 1998

Abstract: *N*-Alkoxyphthalimides, stable and readily accessible from alcohols and alkyl halides, are found to be very efficient alkoxy radical precursors.

Alkoxy radicals have unique characteristic properties such as β-fragmentation¹ and hydrogen atom abstraction² due to their high reactivity, as compared with alkyl and aminyl radicals. Various precursors for the generation of alkoxy radicals are normally prepared from alcohols and include nitrites,³ nitrates,⁴ hypohalites,⁵ and sulfenyl ethers,⁶ in which nitrates and certain sulfenyl ethers⁷ are relatively stable to be isolated. However, their preparations often require acidic conditions and/or reactive reagents which can not be compatible with other labile functional groups in the molecule. *N*-Alkoxypyridine-2-thiones have been developed as stable alkoxy radical precursors.⁸ However, the selective *O*-alkylation of the sodium salt of 2-mercaptopyridine-*N*-oxide with alkyl halides is still a problem due to competing *S*-alkylation.⁹ Although a new procedure for the preparation of *N*-alkoxypyridine-2-thiones has appeared recently,¹⁰ the yields are not generally high.

During our studies on the functionalization of unactivated C-H bonds via 1,5-hydrogen transfer from carbon to oxygen, a stable and efficient alkoxy radical precursor was needed. Thus, we turned our attention to the possibility of using N-alkoxyphthalimides as possible alkoxy radical precursors because N-alkoxyphthalimides are very stable and easily accessible from alkyl halides and alcohols (Figure 1). N-Acyloxyphthalimides are known to generate alkyl radicals both under photolysis and under the standard radical conditions using Bu₃SnH/AIBN. AIBN.

N-Alkoxyphthalimides were readily prepared from alkyl halides and alcohols in high yield by routine operations. Experimental results for the preparation of **3** and for the generation of alkoxy radicals from **3** are shown in Table 1. Firstly, treatment of alkyl halide **1** with the sodium salt of *N*-hydroxyphthalimide in DMF gave *N*-alkoxyphthalimide **3** in high yields (method A) (eq 1).¹⁴ The reaction normally was complete within 10 h at room temperature and the reaction time could be considerably shortened by performing the reaction at 70 °C. Secondly, *N*-alkoxyphthalimides were prepared by treatment of alcohol **2** with *N*-hydroxyphthalimide, diethyl azodicarboxylate, and triphenylphosphine using the well-known Misunob procedure (method B) (eq 2).^{15,16} Two procedures were equally effective and worked well with primary and secondary alkyl halide **1** and alcohol **2**. As we expected, *N*-alkoxyphthalimides were very stable and could be kept for several weeks without any decomposition.

R-X (1), R-OH (2)

RO-N

$$\begin{array}{c} & & & \\ &$$

$$R-X + NaO-N$$

$$\frac{DMF}{\text{method A}} RO-N$$

$$3$$

$$(1)$$

ROH + HO-N
$$Ph_3P/DEAD, THF$$
 method B 3 (2)

Table 1. Preparation of *N*-Alkoxyphthalimides and Generation of Alkoxy Radicals^a

attraction of the control of the con				
RX (1), ROH (2)	method	time,h ^b	yield,% ^b (3)	yield,% ^c ROH (2)
PhCH ₂ Br	Α	10	86	95
PhCH ₂ OH	В	18	92	
Ph(CH ₂) ₃ Br	Α	5	63	95
Ph(CH ₂) ₃ OH	В	18	84	
Ph(CH ₂) ₅ Br	Α	18 (3)	80 (87)	95
PhO(CH ₂) ₄ Br	Α	10	87	99
PhO(CH ₂) ₄ I	Α	7	92	
NC(CH ₂) ₄ Br	Α	16 (2)	81 (82)	91
trans-PhCH=CHCH ₂ Br	Α	10	81	90
trans-PhCH=CHCH ₂ Br	В	18	91	
trans-PhCH=CHCHOHC	Н ₃ В	18	75	91
CH ₃ CHBrCO ₂ CH ₂ Ph	Α	6	91	92
Ph(CH ₂) ₂ CHBrCH ₂ CH ₃	Α	(6)	(62)	93
Ph(CH ₂) ₂ CHOHCH ₂ CH ₃	в	20	26	
Ph(CH ₂) ₂ CHICH ₃	Α	(2)	(78)	91
HO(CH ₂) ₆ Br	Α	14	65	93

^a The yield refers to the isolated yield. ^bThe numbers in the parentheses indicate the reaction time and the yield at 70 °C. Otherwise, the reaction was carried out at room temperature. ^c The reaction was complete within 2 h

We began our studies with *N*-alkoxyphthalimide **4**. Radical reaction of **4** with Bu₃SnD/AIBN in refluxing benzene under a high dilution afforded **7** in 99% yield (95% deuterium exchange), resulting from the generation of alkoxy radical **5** and the subsequent 1,5-hydrogen transfer from carbon to oxygen (eq 3). Encouraged by this result, we carried out several experiments to examine the reactivity of *N*-alkoxyphthalimides relative to other radical precursors toward tributyltin radical. Treatment

472 LETTERS SYNLETT

of an equimolar amount of *N*-alkoxyphthalimide **8** and alkyl bromide **9a** with Bu₃SnH/AIBN afforded alcohol **10** (9%) and reduction product **11** (88%) (eq 4), indicating that **8** was much less reactive than bromide **9a**. However, **8** was more reactive than phenylselenide **9b**. Table 1 summarizes experimental results and shows the clean generation of alkoxy radicals from the corresponding *N*-alkoxyphthalimides under the standard conditions (Bu₃SnH/ AIBN).¹⁷ The reaction was complete within 2 h in refluxing benzene and the yields were consistently high. Radical cyclization of an alkoxy radical onto the double bond was successfully carried out with **12** to afford 2-benzyltetrahydrofuran (**13**) in 93% yield (eq 5). We also found that *tris*(trimethylsilyl)silane¹⁸ was equally effective for the generation of alkoxy radicals from *N*-alkoxyphthalimides (eq 6).

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

RO-N + R'-X
$$\xrightarrow{Bu_3SnH}$$
 R-OH + R'-H (4)

8:
$$R = Ph(CH_2)_5$$
 9a: $X = Br$ 10 (9%) 11 (88%)
9b: $X = SePh$ (90%) (10%)

RO-N

(TMS)₃SiH/AlBN

$$C_6H_6$$

R-OH

(6)

8: R = Ph(CH₂)₅

10 (85 %)

14: R = CN(CH₂)₄

15 (90 %)

Acknowledgement. We thank the Organic Chemistry Research Center (KOSEF) for financial support.

References

- (a) Beckwith, A. L. J.; Ingold, K. U. In Rearrangements in Ground and Exited States; de Mayo, P., Ed.; Academic: New York, 1980. (b) Kochi, J. In Free Radicals; Kochi, J., Ed.; Wiley: New York, 1973; Vol. 2, Chapter 24. (c) Suginome, H.; Yamada, S. Tetrahedron Lett. 1987, 28, 3963. (d) Suginome, H.; Liu, C. F.; Seko, S.; Kobayashi, K.; Furusaki, A. J. Org. Chem. 1988, 53, 5852.(e) Kim, S.; Kim, K. H.; Cho, J. R. Tetrahedron Lett. 1997, 38, 3915.
- (2) (a) Cekovic, Z.; Green, M. M. J. Am. Chem. Soc. 1974, 96, 3000. (b)
 Barton, D. H. R.; Hesse, R. H.; Pechet, M. M.; Smith, L. C. J. Chem.

- Soc., Perkin Trans. 1 1979, 1159. (c) Cekovic, Z.; Ilijev, D. Tetrahedron Lett. 1988, 29, 1441.
- (3) (a) Barton, D. H. R.; Beaton, J. M.; Geller. L. E.; Pechet, M. M. J. Am. Chem. Soc. 1960, 82, 2640. (b) Akhtan, M. Adv. Photochem. 1964, 2, 263.
- (4) Vite, G. D.; Fraser-Reid, B. Synth. Commun. 1988, 18, 1339.
- (5) (a) Kraus, G. A.; Thurston, J. Tetrahedron Lett. 1987, 28, 4011. (b) Furuta, K.; Nagata, T.; Yamamoto, H. Tetrahedron Lett. 1988, 29, 2215.
 (c) Suginome, H.; Wang, J. J. Chem. Soc., Perkin Trans. 1 1990, 2825.
 (d) Inanaga, J.; Sugimoto, Y.; Yokoyama, Y.; Hanamoto, T. Tetrahedron Lett. 1992, 33, 8109
- (6) Beckwith, A. L. J.; Hay, B. P; Willams, G. M. J. Chem. Soc., Chem. Commun. 1989, 1202.
- (7) (a) Pasto, D. J.; L'Hermine, G. J. Org. Chem. 1990, 55, 5815. (b) Pasto,
 D. J.; Cottard, F. Tetrahedron Lett. 1994, 35, 4303.
- (8) Beckwith, A. L. J.; Hay, B. P. J. Am. Chem. Soc. 1988, 110, 4415.
- (9) Hay, B. P.; Beckwith, A. L. J. J. Org. Chem. 1989, 54, 4330.
- (10) Hartung, J. Synlett 1996, 1206.
- (11) Kim, S.; Lee, T. A. Synlett 1997, 950.
- (12) Okada, K.; Okamoto, K.; Oda, M. J. Am. Chem. Soc. 1988, 110, 8736.
- (13) Barton, D. H. R.; Blundell, P.; Jaszberenyi, J. C. Tetrahedron Lett. 1989, 30, 2341.
- 14) Method A: To a solution of *N*-hydroxyphthalimide (200 mg, 1.2 mmol) and sodium hydride (64 mg, 1.6 mmol) in DMF (4 ml) was added 5-bromovaleronitrile (195 μl, 1.6 mmol) at 25 °C under N₂. After being stirred for 16 h at room temperature, the reaction mixture was diluted with water and extracted with ether. The organic layer was dried over anhydrous MgSO₄, filtered and concentrated. The product was purified by passing through a column of silica gel using an eluent (2:1, n-hexane-ethyl acetate) to give *N*-alkoxy phthalimide 3 (RO=NC(CH₂)₄O, 242 mg, 81 %). ¹H-NMR (200 MHz, CDCl₃) δ 1.86-1.93 (m, 4H), 2.49 (t, J=6.9 Hz, 2H), 4.20 (t, J=5.6 Hz, 2H), 7.69-7.81 (m, 4H); ¹³C-NMR (75 MHz, CDCl₃) δ 16.6, 21.8, 26.8, 76.9, 119.4, 123.4, 128.6, 134.5, 163.4; IR (KBr) 3098, 2952, 2239, 1789, 1727, 1462, 1130, 700 cm⁻¹.
- (15) Method B: To a solution of N-hydroxyphthalimide (40 mg, 0.26 mmol), benzyl alcohol (38 μl, 0.38 mmol) and triphenyl-phosphine (74 mg, 0.28 mmol) in THF (1.5 ml) was added diethyl azodicarboxylate (45 μl, 0.28 mmol) in THF (0.6 ml) at 25 °C under N₂. After being stirred for 18 h at room temperature, the reaction mixture was diluted with water and extracted with ether. The organic layer was dried over anhydrous MgSO₄, filtered and concentrated. The product was purified by passing through a column of silica gel using an eluent (2:1, n-hexane-ethyl acetate) to give N-alkoxyphthalimide 3 (RO=PhCH₂O, 58 mg, 92 %). ¹H-NMR (200 MHz, CDCl₃) δ 5.19 (s, 2H), 7.34-7.77 (m, 9H); ¹³C-NMR (75 MHz, CDCl₃) δ 79.8, 123.4, 128.5, 128.8, 129.3, 129.8, 133.6, 134.3, 163.4; IR (KBr) 3076, 2954, 1789, 1730, 1382, 1131, 976, 698 cm⁻¹.
- (16) Mitsunobu, O. Synthesis 1981, 1.
- (17) General procedure for the generation of alkoxy radicals from N-alkoxyphthalimides 3. To a solution of N-alkoxyphthalimide 3 (RO=PhCH₂O, 60 mg, 0.24 mmol) and AIBN (6 mg) in benzene (4.8 ml, 0.05 M) was added Bu₃SnH (72 μl, 0.26 mmol). The reaction mixture was degassed for 20 min with nitrogen. After being refluxed in refluxing benzene for 2 h, the reaction mixture was concentrated and purified by silica gel column chromatography to give benzyl alcohol (24.6 mg, 95 %).
- (a) Chatgilialoglu, C.; Griller, D.; Lesage, M. J. Org. Chem. 1988, 53, 3641.
 (b) Giese, B.; Kopping, B.; Chatgilialoglu, C. Tetrahedron Lett. 1989, 30, 681.
 (c) Chatgilialoglu, C.; Giese, B.; Kopping, B. Tetrahedron Lett. 1990, 31, 6013.
 (d) Kuliche, K. J.; Giese, B. Synlett 1990, 91.
 (e) Chatgilialoglu, C.; Dickhaut, J.; Giese, B. J. Org. Chem. 1991, 56, 6399.