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Iridium-Catalyzed Oxidative Dimerization of Primary Alcohols to Esters 
Using 2-Butanone as an Oxidant
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Abstract: Oxidative dimerization of primary alcohols with 2-bu-
tanone in the presence of an amino alcohol-based Ir bifunctional
catalyst was accomplished for the first time. The reaction proceeds
with 1–2 mol% of the catalyst and 0.3 mol equivalents of K2CO3 in
2-butanone at room temperature to give the corresponding dimeric
esters in 30–93% yield.
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oxidative dimerization

For the synthesis of dimeric esters, oxidative
dimerization1 of primary alcohols is an important method
as well as the Tishchenko reaction2 of aldehydes
(Scheme 1).

Scheme 1

To date, various reaction systems have been developed,
which include stoichiometric oxidation using Na2Cr2O7,

3

Br2–HMPT,4 Ca(OCl)2,
5 NaOCl,5 NaBrO2,

6 NaBrO3–
NaHSO3,

7 PCC–Al2O3,
8 and so on. Recently, Bobbitt et

al. reported oxidative dimerization of polyfunctional
primary alcohols using oxoammonium salts.9 Kita et al.
have developed an oxidative methyl esterification of
primary alcohols using a hypervalent iodine reagent.10

Several catalytic methods have been developed using, for
example, Pd(OAc)2–CCl4,

11 Ru3(CO)12–tolane,12

RuH2(PPh3)4 (180 °C),13 Pd(OAc)2–PhBr,14 BTMA–Mo
(benzyltrimethylammonium tetrabromooxomolybdate)–
t-BuOOH,15 MoO3–Sb2O4 (300 °C, dehydrogenation).16

However, these catalytic reactions require heating. More-
over, except for the Shvo12 and Murahashi13 methods,
benzyl alcohols are usually difficult substrates for oxida-
tive dimerization by catalytic or stoichiometric methods,
and the major products are not the dimeric esters, but ben-
zaldehydes.4,5,7,8,11,14 Thus, an efficient oxidative dimer-
ization with broad generality has not yet been developed.

Recently, we have developed an Ir aminoalkoxide com-
plex, which catalyzes the oxidative lactonization of diols
and Oppenauer oxidation of primary alcohols.17,18 In this
paper, we present the Ir complex-catalyzed oxidative
dimerization of various primary alcohols at room temper-
ature. This reaction is also the first example for the use of
ketone as a cooxidant.19

When a mixture of 3-phenylpropanol (1a) in 2-butanone
(2.7 equiv) containing the Ir complex 317a and K2CO3 (2-
butanone:1a:3:K2CO3 = 270:100:2:30) was stirred at
room temperature for 20 hours, 3-phenyl-1-propyl 3-phe-
nylpropanoate (2a) was obtained in 89% yield (Table 1,
entry 4). The reaction proceeded similarly in acetone, 3-
pentanone (entries 5, 6). To obtain the dimeric ester in
high yield, the uses of K2CO3 and high-concentration con-
ditions are crucial. Without the base, the reaction in 2-bu-
tanone proceeded in only 30% yield after 20 hours (entry
1). However, the yield increased to 76% in the presence of
just 5 mol% of K2CO3 (entry 2).20 The reaction using 0.3
M 2-butanone solution (37 equiv) was slower and gave
only 9% yield (entry 3).

2 RCH2OH RCO2CH2R

2 RCHO RCO2CH2R

oxidative dimerization

Tishchenko reaction

oxidant

1 2

4 2

Table 1 Oxidative Dimerization of 1aa

Entry Ketone K2CO3 
(equiv)

Conversion 
(%)

Yield of 2a 
(%) 

1 2-Butanone None 33 30

2 2-Butanone 0.05 78 76

3b 2-Butanone 0.3 81 9

4 2-Butanone 0.3 92 89

5 Acetone 0.3 86 82

6 3-Pentanone 0.3 87 85

a Unless otherwise stated, the reaction was carried out using 1a 
(1.0 mmol), ketone (2.7 mmol), 3 (0.02 mmol, 2 mol%), and K2CO3 
(0–0.3 mmol) at r.t. for 20 h.
b 37 Equiv of 2-butanone were used.
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Having succeeded in optimizing the reaction conditions,
we next investigated the catalytic oxidative dimerization
of other substrates. As shown in Table 2,21,22 both aliphat-
ic and benzylic alcohols could be converted to the corre-
sponding dimeric esters in high yields. The esters 2c,d,
which are used as perfume materials (apple flavor), were
obtained in 83% and 72% yields, respectively. The reac-
tion of alcohol containing a b-oxygen proceeded in 73%
yield. Benzyl alcohol afforded benzyl benzoate in 93%
yield (entry 6). A gram-scale reaction can be performed in
the presence of even 1 mol% catalyst (entry 7). The reac-
tion proceeds smoothly even in the case of benzyl alco-
hols with an electron-donating group (entries 8–10). To
our knowledge, this represents the first successful oxida-
tive dimerization of benzylic alcohols with an electron-
donating group. Moreover, the oxidation of benzyl alco-
hol with a substituent such as sulfide, which is susceptible
to oxidation, proceeded without any difficulty (entry 9).
Benzyl alcohols with an electron-withdrawing group were
also good substrates (entries 11–13). The reaction of the
unsaturated alcohol 1m gave 2m in 67% yield, albeit with
a longer reaction time. However, the reaction of cinnamyl
alcohol 1n gave 2n in only 30% yield, along with a mix-
ture of partially or fully saturated products.23

A probable mechanism for the Ir-catalyzed oxidative
dimerization is shown in Scheme 2. At first, the Ir com-
plex 3 oxidizes primary alcohol 1 to give the correspond-
ing aldehyde 5, which reacts with another alcohol 1 to
give hemiacetal 6. Then, the second oxidation of the
hemiacetal 6 affords the dimeric esters 2. The role of 2-
butanone as a co-oxidant is confirmed by the observation
of 2-butanol in 1H NMR after the reaction.

In conclusion, we have developed a highly efficient cata-
lytic oxidative dimerization of various primary alcohols
with high yield. This simple and economical process
should be useful for contemporary organic synthesis. Fur-
ther details and an extension of this work will be reported
in due course.
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Table 2 Oxidative Dimerization of Primary Alcohols Catalyzed by 
an Ir Catalyst 3a

Entry Alcohol Time 
(h)

Conversion 
(%)

Yield 
(%)b

1

1a

20 92 89 (97)

2

1b

40 93 86 (92)

3

1c

48 87 83 (95)c

4

1d

48 76 72 (95)c

5

1e

48 81 73 (90)d

6
7

1f

25
45

95
86

93 (98)
81 (94)e

8

1g

26 92 89 (97)

9

1h

26 93 87 (94)

10

1i

25 93 86 (92)

11

1j

25 97 91 (94)

12

1k

24 95 91 (96)

13

1l

48 84 80 (95)

14

1m

96 76 67 (88)d

15

1n

17 98 30 (31)

a Unless otherwise stated, the reaction was carried out using 1 (1.0 
mmol), 2-butanone (2.7 mmol), 3 (0.02 mmol, 2 mol%), and K2CO3 
(0.3 mmol) at r.t.
b Yield in parentheses are based on the consumed alcohols.
c Yields of esters and recovered alcohol were determined by GC.
d Yields of recovered alcohol were determined by GC.
e With 1 g of 1f and 1 mol% of catalyst.
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