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ABSTRACT: Fusing the decarboxylase OleTJE and the reductase domain of P450BM3 creates a self-sufficient protein, 
OleT-BM3R, which is able to efficiently catalyze oxidative decarboxylation of carboxylic acids into linear α-olefins (LAOs) 
under mild aqueous conditions using O2 as the oxidant and NADPH as the electron donor. The compatible electron trans-
fer system installed in the fusion protein not only eliminates the need for auxiliary redox partners, but also results in 
boosted decarboxylation reactivity and broad substrate scope. Coupled with the phosphite dehydrogenase based NADPH 
regeneration system, this enzymatic reaction proceeds with improved product titers of up to 2.51 g L-1 and volumetric 
productivities of up to 209.2 mg L−1 h−1 at low catalyst loadings (~0.02 mol%). With its stability and scalability, this self-
sufficient biocatalyst offers a nature-friendly approach to deliver LAOs.  
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Linear α-olefins (LAOs) are next-generation fuels and 
key feedstock chemicals for the production of surfactants, 
lubricants, detergents, and polymers.1-5 Currently, these 
olefins are predominantly produced from petroleum via 
ethylene oligomerization that only yields even-numbered 
terminal olefins.6-9 Considering dwindling fossil fuel re-
serves, pursuing a renewable route to access LAOs is of 
urgency.10,11 Pleasingly, abundant and bioavailable fatty 
acids (FAs) may provide an alternative source for the sus-
tainable production of LAOs through straightforward 
decarbonylative dehydration or oxidative decarboxyla-
tion,12 which can lead to both even- and odd-numbered 
LAOs. To achieve this goal, transition-metal catalysts in-
cluding palladium, rhodium, iridium, and iron have been 
developed.13-20 While impressive, these approaches usually 
suffer from harsh reaction conditions (T ≥110 °C) and 
require in situ distillation of the product to maintain ac-
ceptable α-selectivity. Furthermore, activation of the FAs 
with stoichiometric anhydrides is often needed, resulting 
in extra waste. Nowadays, intensifying environmental 
concerns urge scientists to investigate chemical transfor-
mations using green solvents, such as water, or eco-
friendly methods, including electrochemistry21-24 and bio-
catalysis.25-28 Accordingly, we aimed for a green strategy to 
supply LAOs from FAs. 

 

 

 

Recently, a cytochrome P450 enzyme, OleTJE, was 
found to catalyze the oxidative decarboxylation of satu-
rated FAs into terminal olefins using H2O2 as the oxi-
dant.29 H2O2 deactivated this biocatalyst at millimolar 
concentration and these H2O2-dependent OleTJE systems 
had relatively low catalytic efficiency and narrow sub-
strate scope (FAs ≥ C8).30-35 When coupled with redox 
partners, OleTJE could catalyze the same reaction with O2 
as the oxidant and NAD(P)H as the electron donor.36-39 
Addition of putidaredoxin reductase and putidaredoxin 
(CamAB) to the reaction could increase the reactivity and 
turnover number of OleTJE.37-39 However, preparation of 
the CamAB-containing lysate and calibration of the lysate 
versus OleTJE complicated the reaction system and would 
limit its application. Previous effort to create a self-
sufficient enzyme by fusing OleTJE to P450RhF reductase 
domain achieved H2O2-independent catalysis, but this 
engineered enzyme unfortunately displayed low activity, 
only being able to decarboxylate FAs C12-C18.36 In this 
study, a more compatible electron transfer system is in-
stalled in an OleTJE-containing fusion protein, resulting in 
a self-sufficient biocatalyst with increased decarboxyla-
tion reactivity. Our approach, employing O2 as the  
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Figure 1. (A) Structural schematic of OleT-BM3R shown 
as the cartoon representation. OleT-BM3R is composed of 
OleTJE (residues 1-418, PDB code 4L54, pink), FMN bind-
ing domain (residues 479-630 of P450BM3, PDB code 
1BVY, cyan) and FAD/NADPH-binding domain (residues 
660-1048 of P450BM3, PDB code 4DQL, blue) of 
P450BM3. The cofactors, heme, FMN, FAD and NADP+ 
are displayed as sticks. (B) Oxidative decarboxylation of 
carboxylic acids to olefins by OleT-BM3R (pictured in 
lyophilized form) that uses O2 with NADPH recycling. 
PTDH = phosphite dehydrogenase. 

 

oxidant and NADPH as the electron donor, converts 
structurally diversified carboxylic acids to their corre-
sponding olefins under mild aqueous conditions. This 
stable fusion protein reduces the effort required for pro-
tein production and purification and simplifies the reac-
tion system, making it more suitable for synthetic and 
industrial application.  

To start, we chose CYP102A1 (P450BM3) from Bacillus 

megaterium as the template for the construction of the 
self-sufficient OleTJE fusion protein. The heme domain of 
P450BM3 is fused with the reductase domain (BM3R) as a 
single polypeptide, establishing an efficient electron 
transfer to the heme iron that is not contingent on en-
countering a discrete redox partner.40,41 Powered by this 
efficient electron transfer chain, P450BM3’s hydroxylase 
activity is >1000 fold higher than those of other P450 fatty 
acid hydroxylases.42 Superimposition of their crystal 
structures revealed a similar structural fold between 
OleTJE

30 and the heme domain of P450BM343 (RMSD=3.6 
Å) (Figure S1). The replacement of the heme domain of 
P450BM3 with OleTJE (residue 1-418) resulted in a soluble 
protein, named OleT-BM3R (Figure 1A). Preliminary ex-
periments showed that the fusion protein OleT-BM3R 
exhibited high decarboxylation activity towards stearic 

Table 1. The oxidative decarboxylation of various 
saturated FAs by OleT-BM3R with NADPH recyclinga 

Entry Substrate Product 
Yield 
[%]b 

1 CH3(CH2)18CO2H (1a) CH3(CH2)16CH=CH2 (2a) 70 

2 CH3(CH2)16CO2H (1b) CH3(CH2)14CH=CH2 (2b) 73 

3 CH3(CH2)14CO2H (1c) CH3(CH2)12CH=CH2 (2c) 60 

4 CH3(CH2)12CO2H (1d) CH3(CH2)10CH=CH2 (2d) 52 

5 CH3(CH2)10CO2H (1e) CH3(CH2)8CH=CH2 (2e) 46 

6 CH3(CH2)9CO2H (1f) CH3(CH2)7CH=CH2 (2f) 58 

7 CH3(CH2)8CO2H (1g) CH3(CH2)6CH=CH2 (2g) 70 

8 CH3(CH2)7CO2H (1h) CH3(CH2)5CH=CH2 (2h) 47 

9 CH3(CH2)6CO2H (1i) CH3(CH2)4CH=CH2 (2i) 40 

10 CH3(CH2)5CO2H (1j) CH3(CH2)3CH=CH2 (2j) 70 

11 CH3(CH2)4CO2H (1k) CH3(CH2)3CH=CH2 (2k) 68 

12 CH3(CH2)3CO2H (1l) CH3CH2CH=CH2 (2l) 11 

13 CH3(CH2)2CO2H (1m) CH3CH=CH2 (2m) 14 

aReaction conditions: purified OleT-BM3R (3 μM), substrate (1 
mM), catalase (100 U mL-1), NADPH (200 μM), PTDH (2 μM), 
sodium phosphite (0.01 M), 1 mL scale, rt, 12 h. bdetermined by 
GC or headspace GC (see the supporting information).  

 

acid (FA C18:0) in the presence of oxygen and NADPH at 
ambient temperature [turnover number (TON) = 2520, 
turnover frequency (TOF) = 472 h-1, NADPH coupling 
efficiency = 61%]. In contrast, when the same reaction was 
performed with OleTJE and free BM3R, the TOF and 
NADPH coupling efficiency were only 65 h-1 and 29%, 
respectively. These results prove an enhanced electron 
transfer from BM3R to OleT in our fusion protein. Com-
pared with other redox systems for the decarboxylation of 
FAs with OleTJE, this self-sufficient enzyme showed ad-
vantages in turnover number, rate of reaction, and 
NADPH coupling efficiency (Table S1). When this reac-
tion was coupled to a phosphite dehydrogenase (PTDH) 
based NADPH regeneration system, 44-46 the overall de-
carboxylation activity (TON = 2167) was maintained. Iso-
lated BM3R was susceptible to temperature-induced ac-
tivity loss (inactivation rate = 0.22 min-1 at 30 °C),47 but 
the OleT-BM3R fusion protein was stable at 37 °C for 24 h 
(Figure S2). Moreover, purified OleT-BM3R can be lyophi-
lized (Figure 1B) and conveniently stored at -20 °C for 
months without significant activity loss. These results 
demonstrate that OleTJE is able to complement BM3R in 
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P450BM3, together forming a structurally stable and func-
tionally active entity.  

With the engineered OleT-BM3R in hand, we proceed-
ed to explore the reactivity and scope of the oxidative 
decarboxylation of FAs (Table 1). Gratifyingly, both long- 
and medium-chain saturated FAs 1a-k successfully partic-
ipated in this transformation, delivering the desired LAOs 
2a-k up to 73% yield (entries 1-11). Short-chain fatty acids 
1l-m also worked albeit with meager yields (entries 12-13). 
These results indicate good compatibility between OleT 
and BM3R in the fusion protein. Notably, utilizing natu-
rally occurring even-numbered saturated FAs afforded 
prohibitively expensive odd-numbered terminal olefins, 
such as 2a and 2b, which are inaccessible through the 
oligomerization of ethylene. Meanwhile, α- and β-
hydroxylations occurred alongside the desired decarboxy-
lation process. Formation of the nonvolatile α/β-
hydroxylated products was also dependent on chain 
length (Table S2). The catalytic cycle of OleTJE involves 
abstraction of a Cα/Cβ hydrogen atom of the carboxylic 
acid by the iron (IV)-oxo heme π-cation radical interme-
diate (Compound I), followed by a competition between 
the ·OH rebound and carbon-carbon scission that delivers 
the corresponding hydroxylation and decarboxylation 
products.30,48-50 This mechanism guarantees the exclusive 
formation of α-alkenes from the decarboxylation pathway. 
As a result, this mild enzymatic approach displays ad-
vantages over synthetic methods, which employ transi-
tion-metal catalysts under harsh conditions and thus par-
tially form the thermodynamically stable internal alkenes.  

To extend the synthetic application of this enzymatic 
transformation, we further explored its substrate scope 
and functional group tolerance (Table 2). To our delight, 
both cyclic and acyclic α-branched carboxylic acids 3a-b 
underwent the expected reaction, providing the corre-
sponding olefins in reasonable yields (entries 1-2). Simi-
larly, phenylpropanoic acids 3c-d smoothly delivered the 
respective vinylbenzenes 4c-d with improved yields (en-
tries 3-4) and only traces of hydroxylation products were 
formed in these reactions (Table S2). Functional groups 
like olefins and ketones were tolerated and a free-
hydroxyl moiety was also untouched during the reaction 
(entries 5-7). Remarkably, sensitive groups such as bromo 
and aldehyde, which are vulnerable under conditions us-
ing transition-metal catalysts, survived due to our mild 
enzymatic conditions (entries 8-9). When diacid 3j was 
examined, the anticipated oxidative decarboxylation oc-
curred on both acids (entry 10). Interestingly, only termi-
nal diene was formed. Although no ω-alkenoic acid in-
termediate was found, its α/β-hydroxy derivatives were 
detected (Table S2), indicating that the dicarboxylic acid 
underwent tandem decarboxylation via ω-alkenoic acid 
intermediate. 

To testify its potential for preparative application, this 
enzymatic transformation was performed in a concentrat-
ed manner with stearic acid as a substrate (Table 3). 
Simply increasing the substrate concentration from 1 mM 
to 10 mM led to a slightly diminished yield but dramati-
cally improved product titer and volumetric productivity  

Table 2. Further substrate scope study.a 

Entry Substrate Product 
Yield 
[%]b 

1 
 

 

30 

2 
 

 

30 

3 
 

 

78 

4 
 

 

44 

5 
 

 

71 

6 
 

 

48 

7 
 

 

42 

8 
 

 

40 

9c
 

 

 

11d
 

10 
 

 

42 

aReaction conditions: see conditions in Table 1. bdeter-
mined by headspace GC. csubstrate (10 mM), sodium 
phosphite (0.05 M), 30 mL scale, 20 h. disolated yield. 

 

(entry 1 vs 2). Compared to the previous 
OleT/CamAB/FDH cascade system,37 our newly devel-
oped OleT-BM3R/PTDH coupled system offers higher 
product titer (1.40 g L-1 vs. 0.93 g L-1) and volumetric 
productivity (116.7 mg L-1 h-1 vs. 42.5 mg L-1 h-1), presuma-
bly because of the greater TOF (472 h-1 vs. 53 h-1) and 
NADPH coupling efficiency (61% vs. 25%). Meanwhile, 
simultaneously elevating the concentrations of both cata-
lyst and substrate further benefited the product titer and 
volumetic productivity at the cost of the conversion (en-
tries 3-4). The product titer of our OleT-BM3R/PTDH 
system could reach as high as 2.51 g L-1 while the volumet-
ric productivity climbed up to 209.2 mg L−1 h−1 at a low 
catalyst loading (~0.02 mol%) (entry 4). Notably, cell-free 
lysate allowed the production of 1.26 g L-1 (5.28 mM, 53% 
yield) 1-heptadecene from 10 mM stearic acid without the  
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Table 3. Oxidative decarboxylation of stearic acid at 
various substrate concentrations by OleT-BM3R with 
NADPH recycling.a 

Entry OleT-
BM3R 
[μM] 

Substrate 
[mM] 

Yield 
[%] 

Titer 

[g L-1] 

Volumetic 
productivity 

[mg L-1 h-1] 

1 3 1 73 0.17 14.5 

2 3 10 59 1.40 116.7 

3 9 20 40 1.91 159.2 

4 9 40 26 2.51 209.2 

5 5b 10 53 1.26 105.0 

6 3c 10 54 1.29 107.5 

aReaction conditions: OleT-BM3R (indicated), catalase (100 U 
mL-1), NADPH (200 μM), PTDH (2 μM), sodium phosphite 
(0.05 M), 1 mL scale, rt, 12 h; bCell-free lysate without 
NADPH supplement. cThe activity of lyophilized OleT-BM3R 
was tested after 2-month storage at -20 °C. 

 

 
Figure 2. Gram scale enzymatic oxidative decarboxylation 
of stearic acid. 

 

need for protein purification (entry 5). This cell-free ly-
sate system is economically desirable as no additional 
NADPH is required. Additionally, lyophilized OleT-BM3R 
exhibited comparable reactivity after two-month storage 
at -20 °C (entry 6). Moreover, our enzymatic system 
proved scalable, and 1g of stearic acid was successfully 
converted to 1-heptadecene in 60% yield (Figure 2). As 
the obtained product is particularly expensive, our enzy-
matic reaction provides this LAO not only through a sus-
tainable approach, but also in a cost-effective fashion. 
Overall, the outstanding stability and scalability of this 
self-sufficient biocatalyst demonstrates encouraging po-
tential for preparation of LAOs. 

In summary, we engineered a catalytically self-
sufficient fusion protein, OleT-BM3R, for oxidative decar-
boxylation of FAs without the need for auxiliary redox 
partners. The simplified reaction could be set up with less 
effort in protein production and purification and per-
formed under mild conditions in aqueous solution using 
O2 as the oxidant and NADPH as the electron donor. It 
could also use inexpensive sodium phosphite as the final 
electron source when coupled with a PTDH based 
NADPH regeneration system. A similar structure between 
OleTJE and the heme domain of P450BM3, a good compat-

ibility of OleTJE and BM3R, and the structural elements in 
P450BM3 that facilitate domain-domain interactions and 
electron transfer processes altogether contribute to the 
boosted decarboxylation reactivity and broad substrate 
scope of the fusion protein. The stability and scalability of 
this enzyme make it a useful biocatalytic platform for the 
sustainable synthesis of LAOs. In addition, high ferricya-
nide and cytochrome c reduction rates (9850 min-1 and 
3330 min-1, respectively) were determined for this fusion 
protein, indicating that it was powered by the rapid elec-
tron transfer in BM3R.51 But a comparable reaction rate of 
P450BM3-catalyzed fatty acid hydroxylation (usually 
TOF>400 min-1) was not observed.42 Thus, further engi-
neering this fusion protein for enhanced interaction and 
electron transfer between the FMN binding domain and 
OleT, which might additionally benefit its catalytic per-
formance, is worth future exploration. Meanwhile, pro-
duction of LAOs in microbial platforms with this biocom-
patible catalyst is also underway in our laboratories. 
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