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Highly-Chemoselective Step-Down Reduction of Carboxylic Acids 
to Aromatic Hydrocarbons via Palladium Catalysis
Chengwei Liu,a Zhi-Xin Qin,b Chong-Lei Ji,b Xin Hong*,b and Michal Szostak*,a

Aryl carboxylic acids are among the most abundant substrates in chemical synthesis and represent a perfect example of a 
traceless directing group that is central to many processes in the preparation of pharmaceuticals, natural products and 
polymers. Herein, we describe a highly selective method for the direct step-down reduction of carboxylic acids to arenes, 
proceeding via well-defined Pd(0)/(II) catalytic cycle. The method shows a remarkably broad substrate scope, enabling to 
direct the classical acyl reduction towards selective decarbonylation by a redox-neutral mechanism. The utility of this 
reaction is highlighted in the direct defunctionalization of pharmaceuticals and natural products, and further emphasized 
in a range of traceless processes using removable carboxylic acids under mild, redox-neutral conditions orthogonal to 
protodecarboxylation. Extensive DFT computations were conducted to demonstrate preferred selectivity for the reversible 
oxidative addition and indicated that a versatile hydrogen atom transfer (HAT) pathway is operable. 

 

Introduction
The reduction of carboxylic acid derivatives represents one of 
the most fundamental transformations in synthetic chemistry 
and catalysis.1 Reduction reactions of carboxylic acids and 
derivatives are traditionally performed using stoichiometric 
metal hydrides.2 However, these reagents suffer from major 
scope limitations and are inherently less safe than milder 
silane-based hydrides due to their pyrophoric nature.3 The 
reduction of carboxylic acid chlorides to aldehydes (acyl 
pathway) has been achieved by Rosenmund using Pd-catalysis4 
via an oxidative insertion/transmetallation/reductive 
elimination mechanism,5 thus establishing the classic cross-
coupling tactics for the synthesis of aldehydes from carboxylic 
acids (Fig. 1A). More recently, a Ni-catalyzed step-down 
reduction of N-chelating amides directly to hydrocarbons has 
been achieved by Maiti and co-workers,6 while the Rueping 
group developed a selective methodology for the Ni-catalyzed 
step-down reduction of phenolic esters and N-acyl-
glutarimides (Fig. 1B),7 developed earlier by our group.8

Herein, we report the first highly selective method for the 
direct step-down reduction of ubiquitous carboxylic acids to 
arenes (decarbonylative pathway), proceeding via well-defined 
Pd(0)/(II) cycle (Fig. 1C). The method supersedes the two-step 
methods using less general substrates and shows much 
broader reaction scope owing to the versatility of Pd-catalysis.5 

The use of preformed carboxylic acid derivatives has been 
of choice to effect the direct reduction to hydrocarbons (Fig. 
1B).6,7 Recognizing that these specifically-designed and less 
general N- and O- derivatives (pyrazoles, glutarimides, 
phenolic esters) are prepared from carboxylic acids in a 
separate step, we recently questioned whether a more 
straightforward approach engaging directly simple aromatic 
carboxylic acids could be realized in this important reaction 
class using versatile Pd-catalysis (Fig. 1C).

R
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Fig. 1 (a) Transition-metal-catalyzed reduction of carboxylic acids.

Specifically, we proposed that the direct reduction of 
carboxylic acids9,10 to hydrocarbons via a heretofore unknown 
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redox-neutral, decarbonylative11–15 Pd(0)-catalyzed pathway 
could enable to use ubiquitous carboxylic acids as traceless 
activating groups, offering high level of predictability5a,b and 
functional group tolerance5e-g under redox-neutral conditions 
orthogonal to protodecarboxylation.16 Furthermore, the 
method would allow us for a more convenient approach to 
hydrocarbons that the reduction of designer N- and O- 
carboxylic acid derivatives, which are further limited by 
substrate scope.6,7 Finally, since aromatic carboxylic acids are 
commercially synthesized from the corresponding and cheaper 
toluenes, the method would establish Pd-promoted access to 
benzenes from feedstock toluenes, thus enabling to valorize 
crude oil as a mild alternative to toluene hydrodealkylation.17

Results and discussion
We initiated our studies by probing the direct reduction of 
electronically- and sterically-unbiased 4-phenyl benzoic acid as 
a model substrate. After extensive optimization (see 
Supporting Information), we found that the reduction of 4-Ph-
benzoic acid in the presence of Pd(OAc)2 (1 mol%), dppb (2 
mol%, dppb = 1,4-bis(diphenylphosphino)butane), piv2O (1.5 
equiv, piv = 2,2-dimethylpropanoyl), Et3N (1.5 equiv) and 
Et3SIH (1.5 equiv) as a hydride source afforded the desired 
reduction product in 97% yield on gram scale, attesting to the 
scalability of the method. Under the optimized conditions 
reduction to the aldehyde or aldehyde derived products was 
not observed, consistent with high facility of catalytic system 
to trigger the reduction (cf. acyl pathway) under redox-neutral 
conditions. 

With optimal conditions in hand, we next focused on 
examining the scope of the decarbonylative reduction of 
carboxylic acids (Fig. 2A). We were delighted to find that the 
scope of the reaction is very broad and compatible with a 
variety of functional groups. As shown, unbiased as well as 
sterically-hindered aryl (2a-a’, 2c-f) and alkenyl benzoic (2b-b’) 
acid underwent smooth reduction. Substitution with electron-
donating (2c-d) or electron-withdrawing (2e-f) groups was 
readily tolerated. Simple (2g-g’) and substituted naphthalenes 
(2h-i) were found to be competent substrates. Notably the 
reduction is not limited to conjugated arenes6 and can be 
applied to a broad array of simple benzoic acids bearing a 
plethora of functional groups poised for further manipulation, 
including unprotected hydroxy (2j-j’), ethers (2k-k’), amines 
(2l-l’), nitriles (2m-m’), esters (2n-n’), ketones (2o-o’), 
aldehydes (2p), sulfonyl (2q), acyl groups (2r-s), amides (2t-u), 
amines (2v-w), and halides (2x). It is noteworthy that a range 
of heterocycles, including quinolines (2y), indoles (2z-z’), 
pyridines (2aa), thiophenes (2ab), benzofurans (2ac) and 
benzothiophenes (2ad), as well as extremely sterically-
hindered carboxylic acids (2af) proceeded in high yields and 
with exquisite selectivity for decarbonylation. Overall, the 
scope of the reaction shows a number of clear advantages 
over other methods.6,7,9,10,11,16

To demonstrate the generality and potential impact of this 
new reduction method, we applied this protocol to late-stage 
derivatization of bioactive natural products and 

pharmaceuticals (Fig. 2B). We were delighted to find that 
decarboxylation of probenecid (2af) as well as of carboxylic 
acids derived from a fluorine-containing18 diflufenican (2ag), 
estrone (2ah) and tocopherol (2ai) afforded the 
decarbonylation products in high yields, underscoring the mild 
conditions and high potential impact of the present protocol.

As a further illustration of the synthetic utility we 
conducted a series of metal-catalyzed and metal-free reactions 
using carboxylic acid as a traceless directing group (Fig. 3A-D). 
We were pleased to find that Ru-catalyzed ortho-arylation 
directed by a carboxylic acid,19 electrophilic meta-
iodination/Suzuki cross-coupling20 and electrophilic meta-
iodination/Heck cross-coupling20 provide rapid access to a 
range of valuable products in high yields, thus signifying a clear 
appeal of this novel method to organic synthesis. Furthermore, 
the decarbonylative reduction of carboxylic acids establishes 
valuable access to benzenes from feedstock toluenes (Fig. 3D). 
New valorization methods of oil processing products are of 
high interest from the industrial and sustainability 
standpoints.17a,b

Altogether, the broad scope of reactivity, tolerance to 
various sensitive functional groups and the potential to 
predictably use in functionalization of complex acids provide 
distinct advantages from other processes for removing 
carboxylic acid group6,7,9,10,11,16 and bode well for future 
applications.

Although the scope of the reaction is very broad, several 
points should be noted: (1) Typically, the yield can be 
improved by using small excess of Et3SiH (3.0 equiv) and/or 
triethylamine as a base. For example, the yield of 2l can be 
improved to 67% under these conditions. (2) In general, the 
reduction of electron-rich aromatics is less efficient than that 
of electron-deficient counterparts (vide infra). (3) Direct 
reduction of electro-rich five-membered heterocycles is 
feasible; for example, the reduction of 5-chlorothiophene-2-
carboxylic acid proceeds in 91% yield. (4) Multiple reductions 
are feasible; for example, reduction of [1,1’-biphenyl]-3,3’,4,4’-
tetracarboxylic acid (bis-phthalic acid) proceeds in 81% yield. 
(5) Halides on the carboxylic acid containing ring are possible. 
(6) We typically did not observe side reactions (e.g. aldehyde 
formation, reduction to the alcohol, deoxygenation). Studies 
on further expansion of the substrate scope are underway.  

Extensive computational studies were conducted to gain 
insight into the reaction mechanism and elucidate the 
controlling factors of selectivity. Recent advances in 
computational organometallic catalysis make this approach 
appealing to design more efficient catalytic systems and 
predict selectivity of bond activation events.21–24 The 
computed free energy profile of the catalytic cycle of 
decarbonylative reduction is shown in Fig. 4A. The C–O bond 
activation of benzoic pivalic anhydride proceeds via TS4, 
generating the acylpalladium intermediate 5. Subsequent 
decarbonylation through TS6 leads to the penta-coordinated 
arylpalladium intermediate 7, and CO then dissociates to 
produce the LPd(aryl)(OPiv) intermediate 8. From 8, the model 
silane (TMSH) coordinates, and a subsequent hydrogen atom 
transfer (HAT) occurs via TS10 to produce the reduced arene 
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Fig. 2. Scope of decarbonylative reduction of carboxylic acids. Conditions: carboxylic acid (1.0 equiv), Pd(OAc)2 (5 mol%), dppb (10 mol%), 
Et3SiH (1.5 equiv), piv2O (1.5 equiv), toluene, 160 °C, 15 h. Dppb = 1,4-bis(diphenylphosphino)butane; piv = pivaloyl. See SI for details. 

and the LPd(silyl)(OPiv) intermediate 12. 12 undergoes a Si–O 
reductive elimination to regenerate the active Pd(0) catalyst 
for the next catalytic cycle. We were not able to locate the 
transition states for palladium-hydride formation despite 

extensive efforts. Based on the free energy changes of the 
overall catalytic cycle, the acylpalladium intermediate 5 is the 
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reduction of benzoic pivalic anhydride. See SI for computational details.

on-cycle resting state, and the HAT step via TS10 is the rate-
limiting step with an overall barrier of 31.8 kcal/mol.

The chemoselectivity of C–O bond activation is determined 
by the substituent of anhydride. Fig. 4B shows the free 
energies of the key intermediates and HAT transition states of 
the competing C–O bond activation pathways. The HAT step 
determines the overall catalytic efficiency and differentiates 
the competing pathways by 9.3 kcal/mol (TS10 vs. TS17). This 
computed selectivity is consistent with the experimental 
observations that the C–O bond activation only occurs on the 
benzoic acid. Detailed free energy changes of the reduction 
pathway involving C–O bond activation of pivalic acid are 

included in the Supporting Information (Fig. S1). Two factors 
contribute to this chemoselectivity. First, the steric repulsions 
between the bulky tBu group and dppb ligand disfavor the 
pivalic acid C–O bond activation pathway. The highlighted 
angles in the HAT transition states reflect these steric effects; 
the phosphine ligand in TS17 is significantly bent away from 
tBu group (Fig. 4C). In addition, the phenyl group is intrinsically 
a better hydrogen atom acceptor comparing with tBu group 
based on the bond dissociation energies (Ph–H: 109.1 
kcal/mol, tBu–H: 90.4 kcal/mol, Fig. 4C). This leads to the 
differences of intrinsic HAT barriers (12.4 kcal/mol via TS10, 
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18.0 kcal/mol via TS17, Fig. 4C), which further increases the 
chemoselectivity.

Additional studies were conducted to gain insight into the 
reaction mechanism (see SI, Figures S2-S7). (1) To investigate 
whether benzoic pivalic anhydride was a possible reaction 
intermediate, 4-Ph-benzoic pivalic anhydride was prepared 
and subjected to the reaction conditions. Formation of product 
2a was observed (87% yield). Moreover, 4-Ph-benzoic acetic 
anhydride served as a competent intermediate (83% yield). (2) 
To investigate electronic effect on the decarbonylative step-
down reduction, a Hammett correlation study employing 
differently substituted 4-Ar-benzoic acids was conducted. The 
study showed a large positive -value of 1.57 (R2 = 0.99), which 
can be compared with the +-value of 0.94 (R2 = 0.92) using 
Hammett-Brown +-constants, suggesting that electron-
deficient arenes are inherently more reactive substrates, 
consistent with facility of metal insertion and decarbonylation. 
(3) To investigate steric effect on the decarbonylative step-
down reduction, intermolecular competition experiments 
between differently substituted carboxylic acids were 
conducted, revealing that sterically-hindered carboxylic acids 
react preferentially, consistent with decarbonylation favored 
by steric demand of acylpalladium complexes. (4) To gain 
additional insight, relative reactivity studies regarding the use 
of biaryls, conjugated arenes and conjugated vinyl-arenes 
were conducted. The experiments revealed the following 
order of reactivity: biaryl = Np > vinyl-Ar. (5) To investigate the 
reduction selectivity, experiments at lower temperatures were 
conducted. The formation of aldehyde reduction products was 
not detected. (6) To investigate the effect of low catalytic 
loading, the reduction was conducted at 0.10 mol% of 
Pd(OAc)2. Formation of product 2a from 1a was observed in 
high yield (82% yield), consistent with the high efficiency of the 
reduction. Note that the reduction at low loading is also 
possible using Ac2O (51% yield), albeit with a decreased 
reaction efficiency. The beneficial effect of piv2O vs. Ac2O is 
consistent with the role of steric repulsion of the t-Bu group 
shutting down the alternative C–O cleavage pathway.12h 

Studies are currently in progress to investigate the mechanistic 
details of the decarbonylative cross-coupling manifold of 
carboxylic acids.

Finally, additional points regarding the impact and utility 
are in order. The facile reduction of carboxylic acids via a 
redox-neutral pathway should be benchmarked against the 
known methods for the reduction of carboxylic acid derivatives 
using Ni6,7 and the known methods via protodecarboxylation 
mechanism.16 (1) The benefits of the direct use of carboxylic 
acids cf. designer analogues are clear. (2) Furthermore, the 
broad scope of the reaction and the orthogonal mechanism for 
removing the carboxylic acid group expand the utility of 
carboxylic acids as directing groups in organic synthesis. (3) 
Perhaps most importantly, the transformation encompasses a 
general manifold for decarbonylative redox-neutral cross-
coupling of ubiquitous carboxylic acids via a unified 
mechanism that provides a range of new compelling methods 
for manipulation of this privileged functional group.25   

Conclusions
In conclusion, we have reported the first method for a direct 
reduction of carboxylic acids to arenes via well-defined redox-
neutral decarbonylative Pd(0)/(II) catalytic cycle. The reaction 
provides a number of practical advantages for the construction 
of arenes over recently established two-step methods using 
designer derivatives of ubiquitous carboxylic acids. The 
reaction conditions are mild and tolerate a remarkably broad 
range of functional groups. The practical value of this 
transformation is evident from the potential to manipulate 
densely-functionalized substrates, including bioactive natural 
products and pharmaceuticals as well as in traceless reaction 
sequences. Detailed DFT study of the reaction mechanism has 
provided insight into the selectivity of bond activation events 
and elucidated steric requirements for a direct activation of 
carboxylic acids via a decarbonylative pathway. Studies 
towards expanding the scope of decarbonylative 
transformations of carboxylic acids and related substrates are 
underway and will be reported in due course.
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Selectivity Control: Step – Down Reduction of Highly Abundant Carboxylic Acids 
 
 
 
 
 
 
 
 
 
 
 

Aryl carboxylic acids are among the most abundant substrates in chemical synthesis and represent a perfect example of a 
traceless directing group that is central to many processes in the preparation of pharmaceuticals, natural products and 
polymers. Herein, we describe a highly selective method for the direct step-down reduction of carboxylic acids to arenes, 
proceeding via well-defined Pd(0)/(II) catalytic cycle. The method shows a remarkably broad substrate scope, enabling to 
direct the classical acyl reduction towards selective decarbonylation by a redox-neutral mechanism. Extensive DFT 
computations were conducted to demonstrate preferred selectivity for the reversible oxidative addition and indicated that a 
versatile hydrogen atom transfer (HAT) pathway is operable. 
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