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ABSTRACT: The polystyrene-cross-linking bisphosphine ligand PS-DPPBz was
effective for the Ir-catalyzed reversible acceptorless dehydrogenation/hydro-
genation of N-heterocycles. Notably, this protocol is applicable to the dehydrogen-
ation of N-substituted indoline derivatives with various N-substituents with
different electronic and steric natures. A reaction pathway involving oxidative
addition of an N-adjacent C(sp3)−H bond to a bisphosphine-coordinated Ir(I)
center is proposed for the dehydrogenation of N-substituted substrates.

The dehydrogenation of N-heterocycles is a fundamentally
important transformation for the construction of

unsaturated heterocycles, such as indoles and quinolines, that
are found in biological molecules.1 Typically, these trans-
formations can be achieved through the stoichiometric use of
strong oxidants such as DDQ and KMnO4 or through catalytic
reactions employing olefinic hydrogen acceptors in stoichio-
metric amounts.2 Compared to these reactions, catalytic
acceptorless dehydrogenations can be cleaner and atom-
economical processes, producing only molecular hydrogen as
a side product.3,4 In addition, catalytic acceptorless dehydro-
genation has the potential to be a chemical hydrogen storage
process.5 The pioneering work by Fujita and co-workers shows
promising efficiency of metal−ligand bifunctional Ir(III)
catalysts with 2-hydroxypyridine-type ancillary ligands
(Scheme 1, top).3a,d,h Importantly, the same catalyst systems
were able to promote hydrogenation as a backward reaction,
demonstrating the reversibility of the process. Later, Jones and
co-workers reported iron and cobalt catalyst systems for similar
reversible processes,3e,g while Xiao and co-workers developed a
cyclometalated imino-Ir(III) catalyst.3c Regardless of these
advances, the catalytic acceptorless dehydrogenation/hydro-
genation of N-heterocycles is largely limited to reactions
involving heterocyclic compounds with one or more free N−H
bonds. Although several novel protocols have emerged more
recently for the dehydrogenation of N-substituted heterocycles
using photoredox catalysts in combination with a cobalt or a
palladium catalyst,6 a frustrated Lewis pair catalyst,7 or a
quinone catalyst,8 electron-withdrawing groups on the N atom

such as acetyl or tosyl groups completely inhibited the
reaction.
Here, we report the heterogeneous catalytic acceptorless

dehydrogenation of N-heterocycles enabled by a combination
of [IrCl(cod)]2 and the polystyrene-cross-linking bisphosphine
PS-DPPBz (Scheme 1, bottom).9 Applicability toward indo-
line-type N-heterocycles with electron-donating or -with-
drawing N-substituents is a notable feature of this catalysis.
The same (PS-DPPBz)-Ir catalyst system also promoted
backward hydrogenation of N-heteroarenes with molecular
hydrogen.
The acceptorless dehydrogenation of N-methylindoline (1a)

in the presence of [IrCl(cod)]2 (2 mol % Ir) and PS-DPPBz (2
mol %) proceeded in p-xylene at 130 °C over 3 h to give N-
methylindole (2a) in 91% NMR yield (Scheme 2).10 The
commercially available Fujita’s bipyridonate-Cp*Ir(III) cata-
lyst (cat.1, structure shown in Scheme 1) also caused the
dehydrogenation of 1a under the same condition but in a
substantially lower yield (47%) than that with the (PS-
DPPBz)-Ir catalyst.
During the reaction with (PS-DPPBz)-Ir catalyst, the

polymer-bound catalyst changed its color from yellow to
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dark red while the solution phase remained colorless (Scheme
2). This observation indicates that virtually all Ir species were
retained in the polymer matrix. The recovered catalyst was
reusable for the dehydrogenation albeit with significant
reduction in the product yield (first run, 87%; second run,
52%; third run, 46%). The decrease in the activity of the
recovered catalysts should be due to partial structure change of
the polymer-bound catalyst to an inactive form rather than to
metal leaching as the solution remained colorless. The 31P CP/
MAS NMR signal of the recovered catalyst appeared with
nearly the same chemical shift value to that of the (PS-
DPPBz)-Ir catalyst precursor but with apparent broadening.11

The use of the polymer ligand PS-DPPBz is crucial for
efficient dehydrogenation of 1a (Figure 1). The soluble
counterpart of PS-DPPBz, 1,2-bis(diphenylphosphino)benzene
(DPPBz), induced only a little activity, indicating the critical
importance of the polystyrene cross-linking. Introduction of
sterically demanding substituents (tBu) on the P-Ph groups
(SciOPP) of the soluble ligand DPPBz increased its catalytic
activity, but the yield was much lower than that with PS-
DPPBz (16% vs 91%). DPPE, DEtPE, and DCyPE with an
ethylene linker between the two P atoms were also less

effective. Larger bite-angle bisphosphines (Xantphos), mono-
phosphines (PPh3), and bipyridine-based ligands (dtbpy)
exhibited no catalytic activity.12

Next, we examined the scope of N-substituted indolines with
the (PS-DPPBz)-Ir system (4 mol % Ir, p-xylene, 130−160 °C,
10−48 h, Scheme 3). Not only electron-neutral (2b) and
donating (2c) substituents but also electron-withdrawing
chloro and nitro (2d and 2e) substituents were tolerated in
the carbon framework of the N-methylindoline scaffold. cis-
1,2,3-Trimethylindoline (cis-1f) underwent efficient dehydro-
genation, while its trans isomer did not participate in the
dehydrogenation at all, indicating that the cis arrangement of

Scheme 1. Acceptorless Dehydrogenation by Transition
Metals

Scheme 2. Ir-Catalyzed Acceptorless Dehydrogenation of N-
Methylindoline (1a)

Figure 1. Effect of homogeneous ligands on the yield of dehydrogen-
ation of 1a. Conditions: 1a (0.2 mmol), [IrCl(cod)]2 (2 mol % Ir),
ligand (2 mol %), p-xylene (1 mL), 130 °C, 3 h. Yield of 2a was
determined by 1H NMR analysis of the crude product.

Scheme 3. Scope of N-Heterocycles for Acceptorless
Dehydrogenationb

aYields are determined by 1H NMR analysis of the crude product.
bReaction conditions: 1 (0.2 mmol), [IrCl(cod)]2 (4 mol % Ir), PS-
DPPBz (4 mol %), p-xylene (1 mL), 130 °C, 20 h (condition A) or
160 °C, 48 h (condition B). Isolated yields are shown.
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the two vicinal hydrogen atoms was crucial for the
dehydrogenation.
Importantly, various N-substituents were tolerated in the

indoline scaffold (2g−2p). Even in the presence of β-hydrogen
atoms in the N-alkyl substituent as in Et, n-Bu, i-Bu, and Cy
groups, the dehydrogenation occurred at the indoline ring with
exclusive site-selectivity. It is also noteworthy that branching
was tolerated at the positions α or β to the N atom. Thus, this
protocol is useful for the synthesis of N-alkylindoles since the
direct N-alkylation of indole derivatives under basic conditions
often suffers from competitive elimination reactions of the
alkylating reagents.13 Moreover, the reaction of 1k bearing a 4-
methoxybenzyl group at the N atom, which should be sensitive
to the oxidation conditions, occurred cleanly to give 2k in high
yield, while the oxidation with stoichiometric DDQ (in THF at
40 °C for 12 h) produced 2k in only 57% yield along with
unidentified byproducts. A phenyl group on the N atom was
also tolerated (2m).
The indoline (1n) with a strongly electron-withdrawing N-

tosyl group underwent efficient dehydrogenation to give 2n in
89% yield, whereas Fujita’s catalyst cat.1 did not promote the
reaction. N-Trifluoromethylsulfonyl or N-acyl-substituted
indolines were also suitable substrates (1o and 1p) although
the yields were moderate.
The (PS-DPPBz)-Ir catalyst system is also applicable to the

acceptorless dehydrogenation of NH-heterocycles (1q−1ab).
The reaction of 1q was conducted on the gram scale with a
reduced catalyst loading of 0.08 mol % (10 mmol scale, 94%
NMR yield, TON 1175) with reasonable hydrogen gas release
(∼210 mL, 94% based on H2). Two- or 3-fold dehydrogen-
ation occurred from tetrahydroquinoline-, tetrahydroisoquino-
line-, tetrahydroquinoxaline-, and piperazine-type substrates to
give the corresponding N-heteroarenes. 2-Phenyl-2,3-dihydro-
benzothiazole (1ab) also participated in this reaction.
To demonstrate the utility of this catalytic acceptorless

dehydrogenation, we applied the protocol to the synthesis of
pharmacologically active molecules having N-substituted
indoline scaffolds. The dehydrogenation of indolines 1ac and
1ad proceeded smoothly to provide CDK4/cyclin D1
inhibitors 2ac and 2ad, respectively, in high yields (Scheme
4a,b). When the corresponding dehydrogenative transforma-
tions were conducted using a large excess of activated MnO2,
the yields were only moderate.14 Compound 1ae, having
piperidine and pyridine moieties, was transformed to the
precursor of enzastaurin (2ae)15 in 37% yield (5 mol % Ir, 43%
conv. of 1ae, Scheme 4c).
To gain insights into the mechanism, the reactions of

deuterated N-methylindolines were conducted. The dehydro-
genation of 2,2- and 3,3-dideuterated N-methylindolines [2
mol % (PS-DPPBz)-Ir, 130 °C, for 2 h] proceeded at only
slightly reduced rates compared to that of nondeuterated N-
methylindoline (61% and 53% 1H NMR yields vs 78%,
Scheme 5a−c). A deuteration effect in the reaction of 2,2,3,3-
tetradeuterated N-methylindoline (3%, Scheme 5d) was much
more significant than expected from the combination of the
effects of the deuteration at the C2 and C3 positions.
A possible reaction pathway for the (PS-DPPBz)-Ir-

catalyzed acceptorless dehydrogenation of N-substituted indo-
lines (1) is given in Scheme 6, which is distinct from the well-
established pathway for the acceptorless dehydrogenation of
NH-heterocycles, in which metal−ligand cooperation is
essential for NH deprotonation and H2 release from the
catalyst as in Fujita’s Cp*Ir(III) catalyst system.16 The reaction

starts from a coordination of the N atom of 1 to bisphosphine-
Ir(I) complex A. Oxidative addition of an N-adjacent C(sp3)−
H bond to the indoline-bound Ir(I) center in B gives Ir(III)
monohydride C.17,18 Subsequent β-hydrogen elimination
provides dehydrogenated product 2 and Ir(III) dihydride
species D.19 The stereochemical requirement of the cis-
arrangement of the two hydrogen atoms at the C2 and C3
positions evidenced by the reaction of cis- and trans-1f
(Scheme 3) is supportive of the involvement of this step.
Finally, H2 is released from D with the regeneration of A.

Scheme 4. Synthesis of Pharmacologically Active Molecules

Scheme 5. Deuterium Isotope Experimentsa

aConditions: 1 (0.2 mmol), [IrCl(cod)]2 (2 mol % Ir), PS-DPPBz (2
mol %), p-xylene (1 mL), 130 °C, 2 h. Yield was determined by 1H
NMR analysis of the crude product.

Scheme 6. Plausible Reaction Pathway
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Based on the proposed reaction pathway and the kinetic
isotope effect profiles obtained in the experiments with the C2-
and/or C3- deuterated 1a derivatives (Scheme 5), the
oxidative addition (B to C) and the β-hydride elimination
(C to D) steps should not be critical in determining the overall
reaction rate. Thereby, the step of hydrogen release from the
dihydridoiridium species (D), which involves dissociation of
two Ir−D bonds, is likely the most influential.
As proven in our prior studies on the beneficial use of PS-

DPPBz for the first-row transition metal catalysis,9 the
bisphosphine motif of PS-DPPBz should be spatially isolated
in the polymer matrix swollen in the organic medium. We
assume that this property would be preserved in the present
iridium catalysis, rendering the (PS-DPPBz)-Ir catalytic center
more resistant from the formation of inactive species such as
bischelated (tetra-P-coordinated) iridium(I) complex (E)20

and a dimer of chlorodihydridoiridium(III) complex (D-
dimer)21 than the homogeneous system.22

In view of the potential for organic hydride hydrogen
storage, the development of efficient methods for reversible
acceptorless dehydrogenation and hydrogenation with the
same catalyst remains an important challenge.5 Thus, the
applicability of the (PS-DPPBz)-Ir system for hydrogenation of
N-heteroarenes with molecular hydrogen, as the backward
reaction of dehydrogenation, was examined. As illustrated in
Scheme 7, a variety of N-substituted and unsubstituted indoles

(2a, 2n, and 2q) and six-membered heteroarenes (2v, 2x, and
2z) were hydrogenated in high yields at 30 or 40 atm H2
pressure.
In summary, a polystyrene-cross-linking bisphosphine-Ir

complex (PS-DPPBz)-Ir showed high activities for the
acceptorless dehydrogenation of N-heterocycles. The protocol
is applicable to the dehydrogenation of N-substituted indoline-
type substrates, applicability to which has not been well
explored with the reported catalytic systems. A catalytic
reaction pathway involving oxidative addition of the N-
adjacent C(sp3)−H bond to the bisphosphine-Ir(I) species is
proposed. The same Ir catalyst was applicable to backward
hydrogenation of N-heteroarenes with molecular hydrogen.
Further applications of this protocol for organic synthesis and
hydrogen storage are in progress.
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