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Abstract: Hafnium hydride was generated by the transmetalation
between Bu3SnH and HfCl4 using either THF or EtCN as the sol-
vent. This process effectively reduced aldehydes, aldimines,
ketones, and esters. In the hafnium hydride reduction of a-alkoxy-
ketones, the diastereoselectivity was dependent on whether THF or
EtCN was used as the solvent.
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Hafnium tetrachloride (HfCl4) is a characteristic Lewis
acid, which catalyzes both the hydrometalation of
alkynes1 and esterification.2 Hafnium tetrachloride cata-
lyzes these reactions by activating both the alkynes and
the carbonyl functional groups.

By contrast, organotin nucleophiles easily transmetalate
with other acidic metals.3 We previously reported that in-
dium halide (InX3)

4 or early transition-metal halides, such
as tantalum halide (TaCl5)

5, were easily transmetaled with
tin compounds, such as tin hydride and allylic tins, to gen-
erate active metal species. Thus, an advantage of the orga-
notin-based metal exchange is that the byproducts, such as
the trialkyltin halides, are weak Lewis acids that reduce
decomposition of the generated active metal species.4,5

In the present study, we examined the transmetalation be-
tween tri-n-butyltin hydride (Bu3SnH) and HfCl4

(Figure 1). We estimated transmetalation by monitoring
the formation of Bu3SnCl using 119Sn NMR.

Figure 1 Generation of Bu3SnCl by transmetalation

When the mixture of Bu3SnH and HfCl4 was stirred in tol-
uene at –20 °C, Bu3SnH first appeared after 5 minutes.6

When THF was used as the solvent, both Bu3SnH and
Bu3SnCl were detected. Although the reaction was not
quantitative, the formation of Bu3SnCl indicated that par-
tial transmetalation of Bu3SnH with HfCl4 had occurred.
In addition, when the reaction was performed in EtCN,
only Bu3SnCl was detected.4 This result indicated that the
hafnium hydride species formed immediately in EtCN. At
lower reaction temperatures, for example, –40 °C, trans-
metalation did not occur. The generated hafnium hydride
was labile, as evidenced by its decomposition (accompa-
nied by H2 production) concurrent with the generation of
Bu3SnCl.7

In the next stage, the ability of the hafnium hydride
formed in situ to react with carbonyl derivatives was in-
vestigated. Tri-n-butyltin hydride, HfCl4, and substrate 1
were mixed in either EtCN or THF at –20 °C, and the
reactions were allowed to proceed for 3 hours. Benzalde-
hyde (1a), acetophenone (1b), and aldimine 1c were ef-
fectively reduced to the corresponding alcohols 2a,b and
amine 2c, respectively (Scheme 1, eq 1–3).

Regioselective 1,2-reduction of a-enones 3 gave allylic
alcohols 4. Cyclic and acyclic aliphatic enones were ap-
plicable substrates (Scheme 2, eq 4–6). The reaction of ar-
omatic enones, such as chalcone, resulted in complex
mixtures.
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Scheme 1 Reduction of carbonyl derivatives
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Scheme 2 1,2-Reduction of enones

The reducing ability of this system is so high that the ester
functional groups 5 were effectively reduced to the corre-
sponding alcohols 6 (Table 1). The use of EtCN as solvent
in these reactions gave a greater yield compared with that
obtained using THF (entries 1 and 2). Thus, both aliphatic
and aromatic alkyl esters were applicable substrates.

As shown in Scheme 3, the chemoselectivity of the reduc-
tion of the a,b-unsaturated ester 7a was dependent on
which solvent was used to induce either of the active
hafnium species, hafnium hydride or HfCl4. Thus, the
reaction in EtCN afforded predominantly the allylic alco-
hol 8a (eq 7). On the other hand, in toluene, the carbon–
carbon double bond was reduced to give the saturated
ketone 8b (eq 8). In toluene, HfCl4 acted as a Lewis acid,
and no transmetalation occurred.

Finally, we performed the reduction of a-alkoxyketones 9
(Table 2).8 Interestingly, the diastereoselectivity of the
reaction was dependent on whether EtCN or THF was
used as the solvent. When the reduction was carried out in
EtCN, predominantly erythro-alkoxy alcohols 11 were
obtained (entries 1 and 3). On the other hand, use of THF
as the solvent increased the ratio of threo-isomers 10 (en-
tries 2 and 6).9

Scheme 4 explains, in terms of the Lewis acidity of the
hafnium center, why the diastereoselectivity of the hafni-
um hydride reduction of 9 varies with the solvent. Tet-
rahydrofuran coordinates to the hafnium center, and
prevents chelation between hafnium and the oxygen sub-
stituent of 9.10 Hence, the reaction proceeds according to
the Felkin–Anh model11 to give threo-alcohol 10. On the

other hand, the ability of EtCN to coordinate with hafnium
is poor; hence, the reduction with hafnium hydride results
in chelation with the substrate 9 to give the erythro-alco-
hol 11.12

Scheme 4 Control of diastereoselectivity
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Scheme 3 Reduction of unsaturated esters
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Table 1 Reduction of Estersa

Entry R1 R2 Solvent Product Yield (%)

1 BnCH2 Et EtCN
6a

97

2 THF 6a 0 (48)b

3 BnCH2 t-Bu EtCN 6a 78

4 n-C8H17 Et EtCN
6b

83

5 Ph Et EtCN
6c

96

6 Bn Bn THF

6d

6c

99

95

a Hafnium hydride was generated by the HfCl4/Bu3SnH system. Re-
duction was performed by the reaction of 9 (1 mmol) with HfCl4/
Bu3SnH (3 mmol) in EtCN or THF (2 mL) at –20 °C for 3 h.
b Room temperature.
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In conclusion, hafnium hydride generated in situ demon-
strated consistent reducing ability. In some cases, control
of regio- and diastereoselectivity was achieved by varying
the solvent.
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Table 2 Reduction of a-Alkoxyketonesa

Entry Substrate 9 Solvent Yield (%) 10/11

1
2

9a

EtCN
THF

93
96

15:85
77:23

3
4

9b

EtCN
THF

85
77

10:90
54:46

5
6

9c

EtCN
THF

100
94

52:48
86:14

a Hafnium hydride was generated by HfCl4/Bu3SnH system. Reduc-
tion was performed by the reaction of 9 (1 mmol) with HfCl4/Bu3SnH 
(1 mmol) in EtCN or THF (2 mL) at –20 °C for 3 h.
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