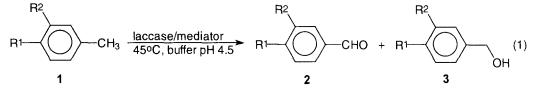


Tetrahedron Letters 39 (1998) 5955-5956

TETRAHEDRON LETTERS

Synthesis of aromatic aldehydes by laccase-mediator assisted oxidation

Elke Fritz-Langhals* and Brigitte Kunath


Consortium für Elektrochemische Industrie GmbH, Central Research Company of Wacker-Chemie GmbH Zielstattstraße 20, D-81379 München, Germany

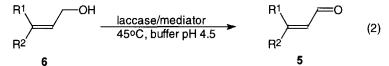
Received 6 April 1998; revised 9 June 1998; accepted 10 June 1998

Abstract

Aromatic aldehydes can be prepared in aqueous medium by oxidation of the corresponding methyl aromatic compounds in the presence of oxygen, the enzyme laccase and catalytic amounts of various N-hydroxy compounds. Allylic alcohols also gave the corresponding aldehydes in good yield. Competing reactions reveal that the N-hydroxy compound is involved in the rate determining step of the reaction. © 1998 Elsevier Science Ltd. All rights reserved.

The selective oxidation of aromatic hydrocarbons into aldehydes is still a challenging task because of unsatisfying selectivity and the formation of carboxylic acids [1]. Synthetic methods using enzymes promise selective transformations under mild conditions in aqueous medium. Laccase [2] from *Trametes versicolor* in combination with a so-called "mediator", for example ABTS [3] or 1-hydroxy-1H-benzotriazole (HOBT) is known as bleaching reagent for pulps [4-7].

We were able to oxidize various methyl benzenes **1** to the corresponding aldehydes **2** by laccase and 0.11 equiv. HOBT in the presence of air; the benzyl alcohols **3** are formed as intermediates (eq. 1, table 1). Carboxylic acids are formed only in traces (<1 %). In accordance to ref.[7] we found very low conversions with ABTS as mediator which is in contrast to ref. [8]. Substituted derivatives of N-hydroxyphthalimide (HPI), for example the 3-amino or the 3- and 4-methyl derivative, give high yields of the aldehyde **2**, whereas HPI itself or derivatives with electron-attracting groups, e.g. 4-NO₂, are ineffective mediators (table 1). This implies that electronic effects play an important role for the mediator activity in the HPI-series. Electron rich methyl benzenes are favorably oxidized. Preliminary results show that in xylenes only one methyl group is oxidized. 4-Aminobenzaldehyde which undergoes rapid polymerization can be easily obtained in solution from the laccase mediator oxidation of 4-methylaniline. Methyl benzenes bearing electron withdrawing groups like the 4-cyano group give only low conversions.


Allylic alcohols 3-methyl-2-buten-1-ol (6, $R^1 = R^2 = CH_3$) and cinnamic alcohol (6, $R^1 = H$, $R^2 = phenyl$) can be oxidized analogously to the corresponding aldehydes (eq.2) whereas oxidation of the methyl groups was not observed. Propenyl benzene and the 4-methoxy and 3,4-dimethoxy

R ² , R ¹ in 1	mediator (equiv.)	accase (IU) ^b	% 2	% 3	% 1
3-0CH ₃ , 4-0CH ₃	HOBT (0.11)	113	20	3	63 [°]
3-0CH ₃ , 4-0CH ₃	HOBT (0.23)	226	49	4	25°
3-0CH ₃ , 4-0CH ₃	HOBT (0.45)	452	76	4	23°
3-OCH ₃ , 4-OCH ₃	HOBT (1.1)	1130	99	0	3°
3-OCH ₃ , 4-OCH ₃	HPI (0.11)	113	9	4 ^d	
3-OCH ₃ , 4-OCH ₃	3-amino-HPI (0.23)	226	44	37	12 ^d
3-OCH ₃ , 4-OCH ₃	3-amino-HPI (0.45)	452	93	5	
3-OCH ₃ , 4-OCH ₃	4-methyl-HPI (0.23)	226	47	18	35 [°]
3-OCH ₃ , 4-OCH ₃	4-methyl-HPI (0.45)	452	50	12	2 ^c
3-OCH ₃ , 4-OCH ₃	3,4-dimethoxy-HPI (0.11)	113	26	12 7 ^d	
3-OCH ₃ , 4-OCH ₃	3,5-dimethyl-HPI (0.11)	113	33	7 ^d	
3-OCH ₃ , 4-OCH ₃	4-nitro-HPI (0.11)	113	0.2	1.3 ^d	
3-OCH ₃ , 4-OCH ₃	N,N'-dihydroxypyromellitic-diimide (0.	11) 113	0.1	2.7 ^d	
4-OCH ₃	HOBT (0.11)	113	48	28 ^d	
4-OCH ₃	3-amino-HPI (0.11)	113	61	7 ^d	
4-CN	3-amino-HPI (0.11)	113	1-10	<1 ^d	

Table 1

Oxidation of methyl benzenes 1 with laccase and mediators in the presence of air.^a

^aprocedure: 1.59, 0.795 or 0.398 mmol of 1 in 1 ml ethanol are diluted with 22 ml of a 100mM citric acid/phosphate buffer pH 4.5. 0.18 mmol of a mediator are added at 45°C and after 10 min. 10 mg laccase (18 IU/mg [4]) in 10 ml water. The mixture is stirred (22 h) under a slight stream of air. GC analysis is performed after adding 22 ml ethanol; ^bper mmol substrate, laccase is available by our biochemistry department, activity measurement in [4]; ^cabsolute yield by GC standard analysis; ^brelative yield based on unconverted substrate.

derivative were completely oxidized at the double bond to give a mixture of 1-phenyl-1,2-propanediols, 1-phenyl-2-hydroxy-1-propanones and benzaldehydes.

In the laccase mediator oxidation N-O-radicals are involved [6, 9]. In competing experiments with mixtures of 3,5- and 2,3-dimethoxybenzyl alcohol as substrate and laccase-air-HOBT and laccase-air-4-methyl-HPI as oxidizing reagent we obtained competition constants κ [10] of 3.8 and 4.9, respectively. When lead dioxide was used as oxidant instead of laccase the same values of κ were obtained within experimental error. This proves that laccase is not involved in the rate determining step but the mediator is. We therefore assume that the substituted NO-radicals created by laccase react with the substrate under hydrogen abstraction thus closing the redox cycle. A further process leads to deoxygenation of the mediator [6].

References

- [1] Yoshino Y, Hayashi Y, Iwahama T, Sakaguchi S, Ishii Y. J. Org. Chem. 1997;62:6810-6813.
- [2] Solomon EI, Sundaram UM, Machonkin TE. Chem. Rev. 1996;96:2563-2605.
- [3] Muheim A, Fiechter A, Harvey PJ, Schoemaker HE. Holzforsch. 1992;46:121-126.
- [4] H.P. Call, PCT World Patent Application, WO 94/01426,1995.
- [5] Bourbonnais R, Paice MG. Appl. Microbiol. Biotechnol. 1992;36:823-827.
- [6] Freudenreich J, Amann M, Fritz-Langhals E, Stohrer J. International Pulp Bleaching Conference, Helsinki, 1.6.-6.6.1998.
- [7] Xu H, Lai YZ, Slomczynski D, Nakas JP, Tanenbaum SW. Biotechnol. Lett. 1997;19:957-960.
- [8] Potthast A, Rosenau T, Chen C-L, Gratzl JS. J. Org. Chem. 1995;60:4320-4321.
- [9] Einhorn C, Einhorn J, Marcadal C, Pierre J-L. Chem. Commun. 1997;447-448.
- [10] Huisgen R. "Methoden der Organischen Chemie", Houben-Weyl-Müller, 3/1, Stuttgart: Thieme 1955:144.