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ABSTRACT
While progress has been made in treating cancer, cytotoxic chemotherapeutic agents are still the most
widely used drugs and are associated with severe side-effects. Drugs that target unique molecular signal-
ling pathways are needed for treating cancer with low or no intrinsic toxicity to normal cells. Our goal is
to target hypoxic tumours and specifically the hypoxia inducible factor (HIF) pathway for the development
of new cancer therapies. To this end, we have previously developed benzopyran-based HIF-1 inhibitors
such as arylsulfonamide KCN1. However, KCN1 and its earlier analogs have poor water solubility, which
hamper their applications. Herein, we describe a series of KCN1 analogs that incorporate a morpholine
moiety at various positions. We found that replacing the benzopyran group of KCN1 with a phenyl group
with a morpholinomethyl moiety at the para positions had minimal effect on potency and improved the
water solubility of two new compounds by more than 10-fold compared to KCN1, the lead compound.
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Introduction

Cancer is one of the leading causes of death, second only to
heart disease1. One of the hallmarks of cancer is the formation of
hypoxic areas inside of solid tumours2. This hypoxic tumour
microenvironment leads to many changes such as the upregula-
tion of pro-angiogenic and pro-glycolytic pathways, as well as
increases in cell proliferation, genetic instability, and metastatic
potential3. A major mediator of the hypoxic response is the hyp-
oxia inducible factor (HIF) pathway4. HIF is a heterodimeric tran-
scription factor consisting of two subunits, HIF-a, the stability of
which is regulated by oxygen, and HIF-1b, which is constitutively
expressed5. There are three known isoforms of HIF-a, HIF-1a, HIF-
2a, and HIF-3a, with HIF-1a being the most commonly expressed
and most extensively studied. Under normoxic conditions, HIF-a
subunits are hydroxylated by a prolyl hydroxylase (PHD2) using
molecular oxygen and then degraded via a VHL-dependent ubiq-
uitination pathway6. Under hypoxic conditions, however, HIF-a
subunits are stabilised, heterodimerise with HIF-1b and recruit co-
activators such as p300 and CBP, to form active transcription
complexes that bind to 50-HREs (hypoxia response elements) in
promoter regions of hypoxia-inducible genes7. Increased levels of
HIF-1a are linked to cancer progression and poor patient out-
come. Therefore, HIF is an attractive target for developing anti-
cancer therapeutics8.

A library of 10,000 products containing the 2,2-dimethyl-2H-
chromene moiety9 was screened for compounds with HIF

inhibitory activity. This led to the identification of a compound
designated KCN1 (Figure 1, 1, N-((2,2-dimethyl-2H-chromen-6-
yl)methyl)-3,4-dimethoxy-N-phenylbenzenesulfonamide) showing
potent inhibition activity (IC50 of �0.6mM) in a HIF-dependent
bioassay10.

Further in vivo studies demonstrated 1’s very pronounced
inhibitory activity against brain, and pancreatic cancers11. In
addition, 1 was well tolerated in mice; daily treatments with
60 mg/kg for up to 12 weeks had minimal side effects11.
Neither did 1 nor its analogs demonstrate cytotoxicity, indicat-
ing the selective inhibitory effects being based on pathways
unique to cancer11. Such results strongly suggest that this is a
very promising class of compounds and warrant further studies.
In fact, a previously synthesised and analysed class of analogs
has been developed, which led to the discovery of 64b
(Figure 1, 2, N-cyclobutyl-N-((2,2-dimethyl-2H-pyrano[3,2-b]pyri-
din-6-yl)methyl)-3,4-dimethoxybenzenesulfonamide) with an IC50
value of �0.3mM.12 However, 1 and its analogs possess poor
solubility in water (0.009mg/mL)11. Therefore, dissolution in
DMSO is necessary for in vitro assays and cremophor:ethanol-
based formulations are needed for in vivo models. Such a for-
mulation introduces undesirable properties12. It is well known
that the successful development of potential therapeutics relies
on more parameters than potency alone. Other properties,
including solubility, can play a critical role. Therefore, we are
interested in designing water-soluble analogs of 1 and 2 to
address this critical aspect of drug development.
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Materials and methods

Synthesis

General methods and materials
All commercial chemicals were of reagent grade from VWR
(Radnor, PA), Aldrich (St. Louis, MO), or Oakwood Chemicals (Estill,
SC), and were used without further purification unless otherwise
indicated. 1H and 13C spectra were obtained on a Bruker 400
NMR spectrometer at 400 and 100MHz, respectively, in deuterated
solvent with TMS (d¼ 0.00 ppm) or deuterated solvent as internal
reference. For all reactions, analytical grade solvent was used.
Anhydrous solvents were used for all moisture-sensitive reactions.
The Mass Spectrometry Facilities at Georgia State University
obtained high-resolution mass spectra on a Waters Micromass Q-
TOF (ESI) instrument.

Typical procedure for morpholine substitution (8a–c)
Benzyl bromide (1 equivalent) was dissolved in acetonitrile.
Morpholine (1.1 equivalents) and K2CO3 (2 equivalents) were
added and the reaction was stirred overnight at room tempera-
ture. The reaction was filtered through Celite and concentrated to
give the product in quantitative yield.

4-(4-Bromobenzyl)morpholine (8a). 1H NMR (CDCl3): d 7.41 (d,
J¼ 8Hz, 2H), 7.19 (d, J¼ 8Hz, 2H), 3.67 (t, J¼ 4Hz, 4H), 3.41 (s,
2H), 2.40 (s, 4H) ppm. 13C NMR (CDCl3): d 137.0, 131.4, 130.8,
120.9, 66.9, 62.6, 53.6 ppm. HRMS (ESI) m/z calculated for
C11H15NOBr [(MþH)þ] 256.0337, found 256.0333.

4-(3-Bromobenzyl)morpholine (8b). 1H NMR (CDCl3): d 7.46 (s, 1H),
7.32 (d, J¼ 8Hz, 1H), 7.20 (d, J¼ 7Hz, 1H), 7.12 (t, J¼ 8Hz, 1H),
3.64 (d, J¼ 4Hz, 4H), 3.39 (s, 2H), 2.37 (s, 4H) ppm. 13C NMR
(CDCl3): d 140.4, 131.9, 130.2, 129.8, 127.6, 122.5, 66.9, 62.7,
53.6 ppm. HRMS (ESI) m/z calculated for C11H15NOBr [(MþH)þ]
256.0337, found 256.0348.

4-(2-Bromobenzyl)morpholine (8c). 1H NMR (CDCl3): d 7.52 (d,
J¼ 8Hz, 1H), 7.46 (d, J¼ 7Hz, 1H), 7.26 (t, J¼ 7Hz, 1H), 7.08 (t,
J¼ 7Hz, 1H), 3.71–3.68 (m, 4H), 3.57 (s, 2H), 2.49–2.48 (m, 4H)
ppm. 13C NMR (CDCl3): d 137.2, 132.8, 130.8, 128.5, 127.2, 124.7,
67.0, 62.2, 53.6 ppm. HRMS (ESI) m/z calculated for C11H15NOBr
[(MþH)þ] 256.0337, found 256.0348.

Typical procedure for lithium halogen exchange to form aldehydes
(9a–c)
Arylbromide (1 equivalent) was dissolved in anhydrous THF
under N2 and cooled in a dry ice and acetone bath for 30min
before treatment with n-buLi (1.4 equivalents). After 30 add-
itional minutes, anhydrous DMF (1.4 equivalents) was added and
stirring continued 1 h. The reaction was quenched with saturated

NH4Cl, taken up in ethyl acetate, washed with brine, dried over
Mg2SO4, and concentrated in vacuo. Purification by column chro-
matography was performed in 4:1 hexanes/ethyl acetate.

4-(Morpholinomethyl)benzaldehyde (9a). Yield: 74%. 1H NMR
(CDCl3): d 9.96 (s, 1H), 7.81 (d, J¼ 8Hz, 2H), 7.49 (d, J¼ 8Hz, 2H),
3.68–3.68 (m, 4H), 3.54 (s, 2H), 2.43 (m, 4H) ppm. 13C NMR
(CDCl3): d 191.9, 145.3, 135.6, 129.8, 129.5, 66.9, 63.0, 53.6 ppm.
HRMS m/z calculated for C12H16NO2 [(MþH)þ] 206.1181, found
206.1182.

3-(Morpholinomethyl)benzaldehyde (9b). Yield: 88%. 1H NMR
(CDCl3): d 9.92 (s, 1H), 7.77 (s, 1H), 7.69 (d, J¼ 8Hz, 1H), 7.54 (d,
J¼ 8Hz, 2H), 7.41 (t, J¼ 8Hz, 1H), 3.63 (m, 4H), 3.50 (s, 2H), 2.39
(m, 4H) ppm. 13C NMR (CDCl3): d 192.2, 138.8, 136.5, 135.2, 130.2,
129.0, 128.7, 66.7, 62.6, 53.4 ppm. HRMS m/z calculated for
C12H16NO2 [(MþH)þ] 206.1181, found 206.1183.

2-(Morpholinomethyl)benzaldehyde (9c). Yield: 85%. 1H NMR
(CDCl3): d 10.37 (s, 1H), 7.81 (d, J¼ 8Hz, 1H), 7.44 (d, J¼ 8Hz, 1H),
7.37–7.33 (m, 2H), 3.76 (s, 2H), 3.58–3.57 (m, 4H), 2.40–2.39 (m, 4H)
ppm. 13C NMR (CDCl3): d 192.0, 140.4, 135.0, 133.2, 130.6, 129.4,
127.9, 67.0, 66.9, 60.0, 53.5, 53.3 ppm. HRMS m/z calculated for
C12H16NO2 [(MþH)þ] 206.1181, found 206.1186.

Procedure for 2,2-dimethyl-2H-chromene-6-carbaldehyde (12)
Synthesised and purified as described in previous examples13.
Yield: 37% over two steps. 1H NMR (CDCl3): d 9.83 (s, 1H), 7.64 (d,
J¼ 8Hz, 1H), 7.52 (s, 1H), 6.87 (d, J¼ 8Hz, 2H), 6.37 (d, J¼ 10Hz,
1H), 5.70 (d, J¼ 10Hz, 1H), 1.47 (s, 6H) ppm.

Typical procedure for reductive amination with aniline (10a–d,
14a)
Aldehyde (1 equivalent), NaBH4 (1.5 equivalents), and InCl3 (0.15
equivalents) were dissolved in anhydrous ACN under inert gas.
Aniline (1.5 equivalents) was added and the reaction was stirred
until completion as monitored by TLC (typically �20min). The
reaction was quenched with saturated NH4Cl, taken up in ethyl
acetate, washed with brine, dried over MgSO4, and concentrated.
Column chromatography (1:1 hexane/ethyl acetate) was used to
yield the final pure product.

N-(4-(Morpholinomethyl)benzyl)aniline (10a). Yield: 60%. 1H NMR
(CDCl3): d 7.23–7.17 (m, 4H), 6.79–6.66 (m, 5H), 4.34 (s, 2H), 3.74
(m, 4H), 3.52 (s, 2H), 2.74 (m, 4H) ppm. 13C NMR (CDCl3): d 148.2,
138.4, 136.8, 129.5, 129.3, 127.5, 118.6, 117.6, 115.1, 112.9, 67.0,
63.2, 53.6, 48.1 ppm. HRMS m/z (ESI) calculated for C18H23N2O
[(MþH)þ] 283.1810, found 283.1805.

N-(3-(Morpholinomethyl)benzyl)aniline (10b). Yield: 60%. 1H NMR
(CDCl3): d 7.36–7.17 (m, 6H), 6.76–6.65 (m, 3H), 4.35 (s, 2H),

Figure 1. Lead compounds 1 (KCN1) and 2 (64b).
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3.73–3.72 (m, 4H), 3.52 (s, 2H), 2.45 (m, 4H) ppm. 13C NMR
(CDCl3): 148.1, 139.5, 138.1, 129.3, 128.6, 128.3, 128.1, 126.4, 117.6,
112.9, 67.0, 63.4, 53.6, 48.3 ppm. HRMS (ESI) m/z calculated for
C18H23N2O [(MþH)þ] 283.1810, found 283.1809.

N-(2-(Morpholinomethyl)benzyl)aniline (10c). Yield: 54%. 1H NMR
(CDCl3): d 7.44 (d, J¼ 7Hz, 1H), 7.32–7.22 (m, 5H), 6.75 (d, J¼ 7Hz,
3H), 5.37 (bs, 1H), 4.39 (s, 2H), 3.75 (m, 4H), 3.57 (s, 2H), 2.51
(m, 4H) ppm. 13C NMR (CDCl3): 148.6, 138.9, 135.8, 131.5, 130.0,
129.3, 128.2, 127.2, 117.4, 113.1, 67.1, 61.7, 53.5, 46.9 ppm. HRMS
(ESI) m/z calculated for C18H23N2O [(MþH)þ] 283.1810, found
283.1805.

N-(4-Morpholinobenzyl)aniline (10d). Yield: 25%. 1H NMR (CDCl3):
d 7.33 (d, J¼ 8Hz, 2H), 7.22 (t, J¼ 8Hz, 2H), 6.94 (d, J¼ 8Hz, 2H),
6.76 (t, J¼ 7Hz, 1H), 6.68 (d, J¼ 8Hz, 2H), 4.28 (s, 2H), 4.00 (bs,
1H), 3.91–3.90 (m, 4H), 3.19–3.18 (m, 4H) ppm. 13C NMR (CDCl3): d
150.6, 148.3, 130.8, 129.3, 128.7, 117.5, 115.9, 112.9, 67.0, 49.5,
47.8 ppm. HRMS (ESI) m/z calculated for C17H21N2O [(MþH)þ]
269.1654, found 269.1659.

N-((2,2-Dimethyl-2H-chromen-6-yl)methyl)aniline (14a). Yield: 80%.
1H NMR (CDCl3): d 7.26–7.21 (m, 3H), 6.97 (d, J¼ 7Hz, 1H), 6.87 (d,
J¼ 8Hz, 1H), 6.79–6.72 (m, 3H), 6.39 (d, J¼ 10Hz, 1H), 5.68 (d,
J¼ 10Hz, 1H), 4.37 (s, 2H), 4.06 (bs, 1H) 1.52 (s, 6H) ppm. 13C NMR
(CDCl3): d 150.8, 148.5, 130.6, 129.2, 128.8, 126.5, 125.5, 122.5,
121.1, 120.5, 117.4, 113.2, 76.4, 43.1, 28.1 ppm. HRMS (ESI) m/z cal-
culated for C18H20NO [(MþH)þ] 266.1545, found 266.1548.

Typical procedure for reductive amination with cyclobutyl and
alkylmorpholino amines (11a–d, 13a–b, 14b)
Aldehyde (1 equivalent) and amine (1 equivalent) were dissolved
in anhydrous MeOH under inert gas and the reaction was stirred
overnight at room temperature. NaBH4 (1.6 equiv.) was added and
the reaction stirred for an additional hour. The reaction was
quenched with NaOH (1M), stirred for an hour, then taken up in
ethyl acetate, washed with brine, dried over MgSO4, concentrated,
and taken directly to the next step without further purification.

N-(4-(Morpholinomethyl)benzyl)cyclobutanamine (11a). Crude
yield: 89%. 1H NMR (CDCl3): d 7.32–7.26 (m, 4H), 3.69–3.68 (m, 4H),
3.47 (s, 2H), 3.29 (quintet, J¼ 7Hz, 1H), 2.42 (m, 4H), 2.22–2.21 (m,
2H), 1.63–1.62 (m, 4H) ppm. 13C NMR (CDCl3): d 139.3, 136.3,
129.4, 128.1, 67.0, 63.2, 53.6, 50.8, 31.2, 31.1, 15.0, 14.8 ppm. HRMS
(ESI) m/z calculated for C16H25N2O [(MþH)þ] 261.1967, found
261.1961.

N-(3-(Morpholinomethyl)benzyl)cyclobutanamine (11b). Crude
yield: 88% unpurified. 1H NMR (CDCl3): 7.32–7.19 (m, 4H), 3.69 (m,
6H), 3.49–3.48 (m, 2H), 3.30 (quintet, J¼ 7Hz, 1H), 2.43 (m, 4H),
2.24–2.20 (m, 2H), 1.74–1.63 (m, 4H) ppm. 13C NMR (CDCl3): 140.3,
137.9, 129.0, 128.6, 127.8, 127.1, 66.9, 63.1, 53.7, 53.6, 51.0, 31.1,
14.8 ppm. HRMS (ESI) m/z calculated for C16H25N2O [(MþH)þ]
261.1967, found 261.1963.

N-(2-(Morpholinomethyl)benzyl)cyclobutanamine (11c). Crude
yield: 94%. 1H NMR (CDCl3): d 7.30–7.16 (m, 4H), 3.67 (s, 2H), 3.64
(s, 4H), 3.49 (s, 2H), 3.28–3.27 (m, 1H), 2.53 (s, 1H), 2.43 (s, 4H),
2.19–2.17 (m, 2H), 1.70–1.63 (m, 4H) ppm. 13C NMR (CDCl3): d
140.3, 135.7, 131.3, 130.6, 127.9, 126.7, 67.0, 61.7, 53.9, 53.4, 49.7,

31.0, 15.1 ppm. HRMS (ESI) m/z calculated for C16H25N2O [(MþH)þ]
261.1967, found 261.1962.

N-(4-Morpholinobenzyl)cyclobutanamine (11d). Crude yield: 90%.
1H NMR (CDCl3): d 7.22 (d, J¼ 8Hz, 2H), 6.87 (d, J¼ 8Hz, 2H),
3.86–3.84 (m, 4H), 3.62 (s, 2H), 3.28 (quintet, J¼ 6.8 Hz, 1H),
3.14–3.11 (m, 4H), 2.22–2.19 (m, 2H), 1.70–1.62 (m, 4H) ppm. 13C
NMR (CDCl3): d 150.3, 131.9, 129.1, 115.7, 66.9, 53.5, 50.4, 49.5,
31.1, 14.8 ppm. HRMS (ESI) m/z calculated for C15H23N2O [(MþH)þ]
247.1810, found 247.1819.

N-((2,2-dimethyl-2H-chromen-6-yl)methyl)-2-morpholinoethan-
amine (13a). Crude yield: 90%. 1H NMR (CDCl3): d 7.16 (dd, J¼ 8,
22Hz, 1H), 7.00 (d, J¼ 8Hz, 1H), 6.69 (d, J¼ 8Hz, 1H), 6.27 (d,
J¼ 10Hz, 1H), 5.57 (d, J¼ 10Hz, 1H), 3.72–3.64 (m, 6H), 3.09 (s,
1H), 2.66–2.64 (m, 2H), 2.47–2.44 (m, 2H), 2.35 (m, 4H), 1.39 (s, 6H)
ppm. 13C NMR (CDCl3): d 152.0, 130.9, 128.9, 128.7, 126.2, 122.2,
121.5, 116.1, 76.1, 66.9, 57.9, 53.6, 53.2, 44.9, 27.9 ppm. HRMS (ESI)
m/z calculated for C18H27N2O2 [(MþH)þ] 303.2073, found
303.2063.

N-((2,2-Dimethyl-2H-chromen-6-yl)methyl)-3-morpholinopropan-1-
amine (13b). Crude yield: 89%. 1H NMR (CDCl3): d 7.18–7.10 (m,
1H), 6.98 (d, J¼ 8Hz, 1H), 6.67 (d, J¼ 8Hz, 1H), 6.24 (d, J¼ 10Hz,
1H), 5.55 (d, J¼ 10Hz, 1H), 3.68–3.62 (m, 6H), 2.63 (m, 2H),
2.37–2.35 (m, 4H), 1.67–1.58 (m, 2H), 1.58 (m, 2H), 1.37 (s, 6H)
ppm. 13C NMR (CDCl3): d 151.9, 132.3, 130.9, 128.8, 126.1, 122.3,
121.5, 116.1, 73.9, 66.9, 57.3, 53.7, 47.9, 29.6, 27.9, 26.4 ppm. HRMS
(ESI) m/z calculated for C19H29N2O2 [(MþH)þ] 317.2229, found
317.2237.

N-((2,2-Dimethyl-2H-chromen-6-yl)methyl)aniline (14a). Crude
yield: 90%. 1H NMR (CDCl3): d 7.26–7.21 (m, 3H), 6.96 (d, J¼ 7Hz,
1H), 6.87 (d, J¼ 8Hz, 1H), 6.79–6.72 (m, 3H), 6.39 (d, J¼ 10Hz, 1H),
5.68 (d, J¼ 10Hz, 1H), 4.73 (s, 2H), 4.06 (bs, 1H), 1.52 (s, 6H) ppm.
13C NMR (CDCl3): d 150.8, 148.5, 130.6, 129.2, 128.8, 126.5, 125.5,
122.5, 121.1, 120.5, 117.4, 113.2, 76.4, 43.1, 28.2 ppm. HRMS (ESI)
m/z calculated for C18H20NO [(MþH)þ] 266.1545, found 266.1548.

N-((2,2-Dimethyl-2H-chromen-6-yl)methyl)cyclobutanamine (14b).
Crude yield: 98%. 1H NMR (CDCl3): d 7.03 (d, J¼ 8Hz, 1H), 6.95 (s,
1H), 6.72 (d, J¼ 8Hz, 1H), 6.31 (d, J¼ 10Hz, 1H), 5.60 (d, J¼ 10Hz,
1H), 3.56 (s, 2H), 3.32–3.26 (m, 1H), 2.22 (m, 2H), 1.72–1.69 (m, 4H),
1.42 (s, 6H) ppm. 13C NMR (CDCl3): d 151.9, 132.5, 130.8, 128.9,
126.2, 122.3, 121.2, 116.1, 76.1, 53.5, 50.5, 31.1, 27.9, 14.8 ppm.
HRMS (ESI) m/z calculated for C16H22NO [(MþH)þ] 244.1701,
found 244.1697.

Typical procedure for sulfonylation with 3,4-dimethoxybenzenesul-
fonyl chloride (3a–d, 4a–d, 5a–b)
Amine (1 equivalent) was dissolved in DCM. K2CO3 (2 equivalents)
and 3,4-dimethoxybenzenesulfonyl chloride (2 equivalents) were
added. The reaction was stirred overnight at room temperature,
then washed with brine, dried over MgSO4, and concentrated. The
product was purified by column chromatography in 4:1 or 1:1 hex-
ane/ethyl acetate.

3,4-Dimethoxy-N-(4-(morpholinomethyl)benzyl)-N-phenylbenzene-
sulfonamide (3a). Yield: 11%. 1H NMR (CDCl3): d 7.36 (d, J¼ 7Hz,
1H), 7.35 (s, 1H), 7.22–7.20 (m, 6H), 7.04–7.02 (m, 2H), 6.97–6.94
(m, 2H), 4.72 (s, 1H), 3.98 (s, 3H), 3.77 (s, 3H), 3.70–3.69 (m, 4H),
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3.44 (s, 2H), 2.40 (m, 4H) ppm. 13C NMR (CDCl3): d 152.6, 148.7,
139.2, 135.0, 130.2, 129.2, 129.0, 128.8, 128.4, 127.8, 127.5, 121.4,
110.4, 110.4, 66.9, 63.0, 56.2, 56.01, 54.4, 53.5 ppm. HRMS (ESI) m/z
calculated for C26H31N2O5S [(MþH)þ] 483.1954, found 483.1956.

3,4-Dimethoxy-N-(3-(morpholinomethyl)benzyl)-N-phenylbenzene-
sulfonamide (3b). Yield: 64%. 1H NMR (CDCl3): d 7.36–7.31 (m, 2H),
7.17–7.09 (m, 7H), 6.98–6.91 (m, 4H), 4.69 (s, 2H), 3.95 (s, 3H), 3.73
(s, 3H), 3.63 (t, J¼ 4Hz, 4H), 3.39–3.37 (m, 2H), 2.27 (m, 4H) ppm.
13C NMR (CDCl3): d 152.7, 148.8, 139.1, 137.8, 135.9, 130.1, 129.6,
129.1, 128.8, 128.6, 128.4, 127.8, 127.6, 121.5, 110.5, 67.0, 63.2,
56.3, 56.2, 54.5, 53.5, 48.5 ppm. HRMS (ESI) m/z calculated for
C26H31N2O5S [(MþH)þ] 483.1948, found 483.1928.

3,4-Dimethoxy-N-(2-(morpholinomethyl)benzyl)-N-phenylbenzene-
sulfonamide (3c). Yield: 47%. 1H NMR (CDCl3): d 7.36 (d, J¼ 8Hz,
1H), 7.21–7.18 (m, 4H), 7.10–7.09 (m, 3H), 7.03–7.01 (m, 2H),
6.95–6.93 (m, 2H), 4.97 (s, 2H), 3.97 (s, 3H), 3.75 (s, 3H), 3.62 (m,
4H), 3.48 (s, 2H), 2.35 (m, 4H) ppm. 13C NMR (CDCl3): d 152.7,
148.8, 139.5, 136.1, 135.2, 130.8, 130.2, 129.7, 128.9, 128.8, 127.8,
127.4, 127.3, 121.7, 110.7, 110.5, 67.2, 61.1, 56.3, 56.2, 53.6, 51.3,
31.0, 30.8, 13.6 ppm. HRMS (ESI) m/z calculated for C26H31N2O5S
[(MþH)þ] 483.1948, found 483.1941.

3,4-Dimethoxy-N-(4-morpholinobenzyl)-N-phenylbenzenesulfona-
mide (3d). Yield: 40%. 1H NMR (CDCl3): d 7.35 (d, J¼ 8Hz, 1H), 7.21
(m, 3H), 7.12 (d, J¼ 7Hz, 2H), 7.01–6.93 (m, 4H), 6.76 (d, J¼ 7Hz,
2H), 4.65 (s, 2H), 3.97 (s, 3H), 3.84–3.83 (m, 4H), 3.77 (s, 3H),
3.11–3.10 (m, 4H) ppm. 13C NMR (CDCl3): d 152.5, 150.5, 148.7,
139.2, 130.3, 129.6, 129.1, 128.7, 127.7, 127.1, 121.4, 115.3, 110.4,
66.8, 56.2, 56.1, 54.1, 49.1 ppm. HRMS (ESI) m/z calculated for
C25H29N2O5S [(MþH)þ] 469.1797, found 469.1796.

N-Cyclobutyl-3,4-dimethoxy-N-(4-(morpholinomethyl)benzyl)benze-
nesulfonamide (4a). Yield: 46%. 1H NMR (CDCl3): d 7.43 (dd, J¼ 8,
2 Hz, 1H), 7.34–7.25 (m, 5H), 6.94 (d, J¼ 9Hz, 1H), 4.39 (s, 2H), 4.27
(quintet, J¼ 9Hz, 1H), 3.96 (s, 3H), 3.92 (s, 3H), 3.75–3.72 (m, 4H),
3.51 (s, 2H), 2.46 (s, 4H), 1.99–1.94 (m, 4H), 1.57–1.52 (m, 2H) ppm.
13C NMR (CDCl3): d 152.4, 149.0, 137.8, 132.0, 129.4, 127.0, 120.9,
110.6, 109.8, 66.9, 63.0, 56.2, 56.2, 53.5, 52.9, 48.2, 29.2, 15.0 ppm.
HRMS (ESI) m/z calculated for C24H33N2O5S [(MþH)þ] 461.2110,
found 461.2102.

N-Cyclobutyl-3,4-dimethoxy-N-(3-(morpholinomethyl)benzyl)benze-
nesulfonamide (4 b). Yield: 81%. 1H NMR (CDCl3): d 7.43 (dd, J¼ 8,
2 Hz, 1H), 7.30–7.21 (m, 5H), 6.95–6.93 (d, J¼ 8Hz, 1H), 4.39 (s, 2H),
4.28 (quintet, J¼ 8Hz, 1H), 3.95 (s, 3H), 3.91 (s, 3H), 3.71 (t,
J¼ 4Hz, 4H), 3.49 (s, 2H), 2.43 (s, 4H), 1.99–1.92 (m, 4H), 1.55–1.48
(m, 2H) ppm. 13C NMR (CDCl3): d 152.4, 149.0, 138.7, 137.9, 131.9,
128.4, 128.1, 127.8, 126.0, 120.9, 110.5, 109.7, 67.0, 63.3, 56.2, 56.2,
53.6, 52.9, 48.3, 29.2, 15.0 ppm. HRMS (ESI) m/z calculated for
C24H33N2O5S [(MþH)þ] 461.2110, found 461.2112.

N-Cyclobutyl-3,4-dimethoxy-N-(2-(morpholinomethyl)benzyl)benze-
nesulfonamide (4c). Yield: 63%. 1H NMR (CDCl3): d 7.56 (d, J¼ 8Hz,
1H), 7.47 (dd, J¼ 8, 2 Hz, 1H), 7.31–7.27 (m, 2H), 7.17 (d, J¼ 7Hz,
1H), 6.95 (d, J¼ 8Hz, 1H), 4.68 (s, 2H), 4.45 (quintet, J¼ 8Hz, 1H),
3.96 (s, 3H), 3.92 (s, 3H), 3.65 (m, 4H), 3.50 (bs, 2H), 2.42 (bs, 4H),
1.93–1.90 (m, 4H), 1.56–1.50 (m, 2H) ppm. 13C NMR (CDCl3): d
152.4, 149.0, 138.4, 133.4, 132.1, 130.6, 128.0, 127.4, 126.4, 121.0,
110.5, 109.7, 67.1, 61.6, 56.3, 56.2, 53.5, 52.7, 44.5, 29.0, 15.1 ppm.

HRMS (ESI) m/z calculated for C24H33N2O5S [(MþH)þ] 461.2110,
found 461.2095.

N-Cyclobutyl-3,4-dimethoxy-N-(4-morpholinobenzyl)benzenesulfo-
namide (4d). Yield: 70%. 1H NMR (CDCl3): d 7.41 (dd, J¼ 8, 2 Hz,
1H), 7.25–7.21 (m, 3H), 6.92 (d, J¼ 9Hz, 1H), 6.86 (d, J¼ 9, 2H),
4.32 (s, 2H), 4.20 (quintet, J¼ 8Hz, 1H), 3.93 (s, 3H), 3.88 (s, 3H),
3.86–3.46 (m, 4H), 3.15–3.12 (m, 4H), 2.02–1.90 (m, 4H), 1.54–1.45
(m, 2H) ppm. 13C NMR (CDCl3): d 152.4, 150.4, 149.0 132.2, 129.8,
128.2, 120.9, 115.6, 110.6, 109.7, 66.9, 56.2, 56.1, 52.9, 49.4, 48.0,
29.7, 29.3, 15.1 ppm. HRMS (ESI) m/z calculated for C23H31O5N2S
[(MþH)þ]: 446.1948, found 447.1949.

N-((2,2-Dimethyl-2H-chromen-6-yl)methyl)-3,4-dimethoxy-N-(2-mor-
pholinoethyl)benzenesulfonamide (5a). Yield: 49%. 1H NMR
(CDCl3): d 7.45 (d, J¼ 8Hz, 1H), 6.93 (t, J¼ 9Hz, 2H), 6.88–6.85 (m,
1H), 6.67 (d, J¼ 8Hz, 1H), 6.22 (d, J¼ 10Hz, 1H), 5.59 (d, J¼ 7Hz,
1H), 4.23 (s, 2H), 3.93 (s, 3H), 3.89 (s, 3H), 3.59–3.56 (m, 4H), 3.19 (t,
J¼ 7Hz, 2H), 2.30 (t, J¼ 7Hz, 2H), 2.25 (s, 4H), 1.23 (s, 6H) ppm.
13C NMR (CDCl3): d 152.7, 152.5, 149.1, 131.8, 131.3, 129.1, 128.3,
126.5, 122.0, 121.4, 121.0, 116.3, 110.6, 109.8, 66.8, 57.3, 57.3, 56.3,
56.2, 53.6, 52.2, 44.4, 27.9 ppm. HRMS (ESI) m/z calculated for
C26H35N2O6S [(MþH)þ] 503.2210, found 503.2204.

N-((2,2-Dimethyl-2H-chromen-6-yl)methyl)-3,4-dimethoxy-N-(3-mor-
pholinopropyl)benzenesulfonamide (5b). Yield: 15%. 1H NMR
(CDCl3): d 7.43 (d, J¼ 8Hz, 1H) 6.97 (d, J¼ 8Hz, 1H), 6.94 (d,
J¼ 8Hz, 1H), 6.87 (s, 1H), 6.68 (d, J¼ 8Hz, 1H), 6.23 (d, J¼ 10Hz,
1H), 4.19 (s, 2H), 3.94 (s, 3H), 3.90 (s, 3H), 3.60 (s, 4H), 3.12 (t, J¼ 8,
2H), 2.22 (s, 4H), 2.18 (t, J¼ 7, 2H), 1.59–1.52 (m, 2H), 1.40 (s, 6H)
ppm. 13C NMR (CDCl3): d 152.7, 152.4, 149.1, 131.6, 131.3, 129.3,
128.4, 126.5, 121.9, 121.3, 121.0, 116.3, 110.6, 109.8, 66.9, 56.3,
56.2, 55.9, 53.4, 52.0, 46.2, 28.0, 25.4 ppm. HRMS (ESI) m/z calcu-
lated for C27H37N2O6S [(MþH)þ] 517. 2367, found 517.2366.

Typical procedure for sulfonylation with 4-morpholinosulfonyl
chloride (6a–b)
Amine (1 equivalent) was dissolved in dichloroethane. Pyridine (3
equivalents) and 4-morpholinosulfonyl chloride (1.3 equivalents)
were added. The reaction was refluxed for 2 days, then concen-
trated, taken up in ethyl acetate, washed with saturated NH4Cl
and brine, then dried over MgSO4, and concentrated. The residue
was then purified by column chromatography in 4:1 hexane/ethyl
acetate.

N-((2,2-Dimethyl-2H-chromen-6-yl)methyl)-N-phenylmorpholine-4-
sulfonamide (6a). Yield: 17%. 1H NMR (CDCl3): d 7.32–7.25 (m, 5H),
6.90 (d, J¼ 8Hz, 1H), 6.83 (s, 1H), 6.65 (d, J¼8Hz, 1H), 6.25 (d,
J¼ 10Hz, 1H), 5.60 (d, J¼ 10Hz, 1H), 4.70 (s, 2H), 3.63–3.62 (m,
4H), 3.17 (m, 4H), 1.42 (s, 6H) ppm. 13C NMR (CDCl3): d 131.0,
129.6, 129.2, 129.1, 127.9, 126.9, 122.1, 116.2, 66.3, 56.3, 46.5,
28.0 ppm. HRMS (ESI) m/z calculated for C22H27N2O4S [(MþH)þ]
415.1692, found 415.1695.

N-Cyclobutyl-N-((2,2-dimethyl-2H-chromen-6-yl)methyl)morpholine-
4-sulfonamide (6b). Yield: 16%. 1H NMR (CDCl3): d 7.04 (dd, J¼ 8,
2 Hz, 1H), 6.95 (s, 1H), 6.72 (d, J¼ 8Hz, 1H), 6.30 (d, J¼ 10Hz, 1H),
5.61 (d, J¼ 10Hz, 1H), 4.35 (s, 2H), 4.19 (quintet, J¼ 8Hz, 1H), 3.63
(t, J¼ 5Hz, 4H), 3.09 (t, J¼ 5Hz, 4H), 2.13 – 2.06 (m, 4H), 1.60 (m,
2H), 1.41 (s, 6H) ppm. 13C NMR (CDCl3): d 152.4, 131.2, 130.6,
128.2, 125.5, 122.4, 121.4, 116.4, 76.4, 66.4, 53.0, 48.8, 46.2, 29.6,
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Table 1. Structures, HRE-luciferase reporter inhibitory activity, cLogD, and cLog S of analogs.

Compound Structure IC50 (lM) cLogD cLog S

1

�0.6 4.99 �6.37

2 �0.3 3.34 �4.53

3a 0.9 3.69 �4.39

3b >5 3.71 �4.41

3c >5 3.80 �4.50

3d 3.8 3.98 �5.19

4a 1.0 2.94 �3.36

4b >5 2.96 �3.38

4c >5 3.05 �3.47

(continued)
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28.1, 14.8 ppm. HRMS (ESI) m/z calculated for C20H29N2O4S
[(MþH)þ] 393.1843, found 393.1834.

Lipophilicity and solubility prediction

The in silico logD and log S values of all analogs were predicted
using Calculator Plugins from MarvinSketch 4.3.0, 2017, ChemAxon
(http://www.chemaxon.com), with results detailed in Table 1.
Graphical representations of the logD and log S from pH 0 to 14
are provided in the Supplemental Information.

Luciferase assay

These analogs were first evaluated for their ability to inhibit hyp-
oxia-induced HIF transcriptional activity in LN229-HRE-luciferase
glioma cells as described previously10–12. Their inhibitory activities
are presented as IC50 in Table 1.

Solubility studies using dynamic light scattering

To further investigate the true enhancement of solubility, particle
aggregation was examined using dynamic light scattering (DLS).

Selected compounds were treated according to the following
procedure:

1. All centrifuge tubes and cuvettes were rinsed with either
DCM or water and then vacuum dried before use to remove
dust and any particulates.

2. Stock solutions (10mM) of each compound of interest were
prepared in filtered DMSO.

3. Six dilutions (0, 10, 20, 30, 50, and 100 mM) were prepared in
filtered de-ionised water with 1% DMSO and allowed to rest
at room temperature for 24 h after vortex.

4. DLS analysis was performed for each concentration on the
Brookhaven Instrument Corporation, NanoBrook 90Plus
Particle Size Analyzer, Version 5.20 (Holtsville, NY).

5. Additional experiments were performed at specific concentra-
tions for each compound as follows: 0, 1, 3, 10, and 20mM
concentrations of 1; 0, 10, 12, and 20 mM of 2; 0, 5, 7,
and 10 mM of 3a; and 0, 10, 20, 30, and 50mM concentrations
of 4a.

6. Additional experiments were repeated in filtered PBS� with
1% DMSO as follows: 0, 0.5, 1, 2, 3, and 5 mM concentrations
of 1; 0, 5, 7, 10, 12, and 15 mM of 2; 0, 10, 12, 15, and 20 mM
of 3a; and 0, 10, 20, 30, and 50mM concentrations of 4a.

Table 1. Continued

Compound Structure IC50 (lM) cLogD cLog S

4d 2.6 3.24 �4.15

5a >5 3.13 �4.23

5b >5 3.17 �4.37

6a >5 2.97 �5.17

6b >5 2.22 �4.12
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�Experiments in PBS were carried out the same way as the
experiments in water except DMSO stock solutions were made at
5mM and the PBS diluted samples rested for 1 h before particle
analysis.

Results and discussion

Design

In considering ways to improve water solubility without compro-
mising potency, we thought about introducing a commonly used
morpholino moiety, which is known to help improve water solubil-
ity. In doing so, we were interested in searching for the optimal
position, which would not negatively affect potency. Therefore, we
devised four classes of compounds (Figure 2): Class A incorporates
a morpholinomethylphenyl or morpholinophenyl moiety instead
of the 2,2-dimethyl-2H-chromene moiety and maintains the N-phe-
nyl group; Class B incorporates either a morpholinomethylphenyl
or morpholinophenyl moiety instead of the 2,2-dimethyl-2H-chro-
mene moiety and substitutes the N-phenyl group for an
N-cyclobutyl group; Class C has either a 2,2-dimethyl-2H-chromene
or N-(2,2-dimethyl-2H-pyrano[3,2-b]pyridin-6-yl) moiety and either
an N-ethylmorpholino or N-propylmorpholino group instead of the
N-phenyl; and Class D has the 2,2-dimethyl-2H-chromene moiety
with a N-phenyl-morpholine-4-sulfonamide.

Chemistry

Synthesis of Class A compounds (Scheme 1) was accomplished in
four steps from 2-, 3-, or 4-bromomethylbenzylbromide 7a–c or in
two steps from 4-morpholinobenzaldehyde 9d. Intermediates 7a–c
were substituted with morpholine to yield morpholinomethylben-
zylbromides 8a–c in quantitative yield. Next, the phenyl bromides
8a–c were converted to benzaldehydes 9a–c via lithium-halogen
exchange at �78 �C under inert gas. The aryllithium intermediate
was treated with DMF as the electrophile in situ to generate the
final benzaldehydes 9a–c. The aldehydes 9a–d underwent reduc-
tive amination with aniline to afford the secondary amines 10a–d.

Finally, 10a–d were reacted with 3,4-dimethoxybenzenesulfonyl
chloride to afford sulfonamides 2a–d. Class B compounds
(Scheme 1(C)) were synthesised in almost the same fashion as
Class A, except that reductive amination of 9a–d was with cyclo-
butylamine and was not catalysed by any Lewis acid.

Class C compounds were synthesised (Scheme 2) from
2,2-dimethyl-2H-chromene-6-carbaldehyde 12, which was readily
synthesised from published procedures13. The aldehyde 12 under-
went reductive amination with either ethylaminomorpholine or
propylaminomorpholine to give secondary amines 13a–b, which
were then reacted with 3,4-dimethoxybenzenesulfonyl chloride to
afford sulfonamides 5a–b.

Class D compounds were synthesised (Scheme 3) from 12 in
two steps. First, 12 underwent reductive amination with either
aniline or cyclobutylamine to give secondary amines 14a–b. Next,
the amines 14a–b were reacted with 4-morpholinosulfonyl chlor-
ide to afford sulfonamides 6a–b.

Biology

All the analogs were assessed for their ability to inhibit the HIF-1
pathway using a luciferase reporter assay described previously10.
This assay reports the ability for a compound to inhibit HIF tran-
scriptional activity. However, it does not specifically reveal the
mode of action at the biochemical level. As can be seen from
Table 1, introduction of a morpholino unit on the sulfonamide
nitrogen led to compounds (5) with substantially diminished activ-
ity. The same is true if the morpholino unit is directly attached to
the sulfonyl group (6). In the two series of compounds (3, 4) with
a substituted phenyl group replacing the benzopyran ring in 1,
only introduction of the morpholino moiety at the para positions
(3) allowed for the preservation of HIF inhibition activity. Indeed,
compounds 3a and 3d, which have exchanged the benzopyran
ring for a para-morpholinomethylphenyl and para-morpholino-
phenyl, respectively, exhibit IC50 values of 0.9 and 3.8mM.
Similarly, analogs 4a and 4d, which replace the N-phenyl with a
N-cyclobutyl, but are otherwise structurally the same as 3a and
3d, have IC50 values of 1.0 and �2.6mM, respectively. No other

(A) (B)

(C) (D)

Figure 2. Classes of analogs. (A) Class A, morpholinomethylphenyl in ortho, meta, or para positions, or morpholinophenyl in para position; (B) Class B, morpholinome-
thylphenyl in ortho, meta, or para positions, or morpholinophenyl in para position; (C) Class C, n¼ 2 or 3; (D) Class D.
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(A)

(B)

(C)

Scheme 1. Synthesis of Class A & B compounds. (A) Synthesis of precursors. (B) Synthesis of Class A. (C) Synthesis of Class B. Reagents and conditions: (a) morpholine,
K2CO3, ACN, room temperature, overnight; (b) BuLi, DMF, THF, �78 �C, 1 h; (c) aniline, InCl3, NaBH4, ACN, 20min; (d) 3,4-dimethoxybenzenesulfonyl chloride, K2CO3,
DCM, overnight; (e) cyclobutylamine, NaBH4, MeOH, overnight.

Scheme 2. Synthesis of Class C compounds. Reagents and conditions: (a) amine, NaBH4, MeOH, overnight; (b) 3,4-dimethoxybenzenesulfonyl chloride, K2CO3, DCM,
overnight.

Scheme 3. Synthesis of Class D compounds. Reagents and conditions: (a) aniline, InCl3, NaBH4, ACN, 20min or cyclobutylamine, NaBH4, MeOH, overnight; (b) 4-morpho-
linosulfonyl chloride, pyridine, DCE, reflux 2 days.
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analogs synthesised in this work exhibited HIF inhibitory activity
with IC50 lower than 5mM, suggesting the importance of conserv-
ing electronic and/or steric effects para to the phenyl ring. In par-
ticular, compounds 3a and 4a are active within the same order of
magnitude as 1, and are about threefold less active than the pre-
viously discovered 2 (IC50¼�0.3mM)12. The improved potency of
3a and 4a over 3d and 4d suggests a possible role for flexibility
of the ligand in the binding site.

To gain some initial understanding of lipophilicity and solubil-
ity, the predicted logD and log S values were calculated for 1, 2,
and their analogs. Log P refers to a molecule’s partition coefficient,
or the log of the ratio between its solubility in octanol versus
water14. This is commonly used to indicate a candidate drug’s lipo-
philicity, and a log P or cLog P (calculated log P) less than 5 is gen-
erally considered “drug-like”15. For ionizable small molecules, logD
is the distribution constant, which describes the partition coeffi-
cient at different pH levels16. A molecule’s water solubility is typic-
ally measured at room temperature (20–25 �C) in mol/L and
represented as log S, or clog S when calculated computationally.
Drugs on the market with a variety of structures typically possess
a log S between �5 and �217.

Though several of the morpholine analogs have very drug-like
properties, most are not active in the luciferase assay. Only 3a, 3d,
4a, and 4d are active toward the HIF pathway and only 3a and 4a
show comparable IC50 values as 1. Therefore, we examined their
solubility in water and phosphate buffered saline (PBS).

Solubility studies

To investigate the true enhancement of aqueous solubility, particle
aggregation was examined using DLS. DLS can detect particle
sizes in solution by measuring changes in scattered light in rela-
tion to the Brownian motion of particles18. It is commonly used to
detect the particle sizes of various chemical and biological mole-
cules, including small molecule inhibitors19. Though there are

several methods for detecting solubility, we chose the DLS
method due to its ease, reproducibility, minimal sample require-
ment, and relative sensitivity to small particles.

The active compounds 3a and 4a were compared to their non-
morpholine containing counterparts, 1 and 2, respectively
(Figure 3). Solutions of varying concentrations of each compound
were made in either water or PBS with 1% DMSO. Each solution
was measured in the particle size analyser to identify which sam-
ples showed formation of aggregates in solution. DLS measure-
ments, summarised in Table 2, reveal that 3a forms aggregates at
approximately 10 mM, an order of magnitude higher than 1, which
is insoluble at just 1mM in water. The N-cyclobutyl analog 4a
forms aggregates in excess of 100mM, significantly higher than its
counterpart 2, which forms particles at a mere 10 mM. In PBS, the
solubilities parallel those seen in the water solution, where 1 and
3a exhibit comparable particle formation at 1mM and 15 mM,
respectively. 2 shows particle formation at 10 mM, while 4a shows
none at this concentration, as expected. Indeed, with a logD of
2.94 log S of �3.36 (Table 1), 4a is predicted to be quite soluble in
aqueous solutions.

The described results clearly indicate that (1) the benzopyran
ring can be modified with minimal loss of activity and (2) the para
position of the phenyl ring can tolerate substantial changes and
can be used for improvement of water solubility. Such results will
help future optimisation work.

Conclusion

Of the 12 new morpholine-containing analogs developed in this
work, four demonstrate HIF inhibition in the low or sub-micro-
molar range. In particular, 3a and 4a both exhibit inhibition of
HIF transcriptional activity with IC50 values of 0.9 and 1.0mM,
respectively. As expected, the in silico log P and log S values of
these analogs are considered more favourable than lead com-
pound 1 or its more potent analog 2, and are therefore likely to
be more bioavailable. Following these indications, solubility as
measured by particle detection with DLS reveal the exceptional
solubility of analogs 3a and 4a over their non-morpholine con-
taining predecessors 1 and 2. Particle formation of 4a is
undetected in excess of 100 mM in water and 50 mM in PBS,
while still displaying HIF inhibition in the same order of magni-
tude as lead 1. These results encourage exploration and use of
more soluble moieties to further probe the SAR (structure–activ-
ity relationship) and SSR (structure–solubility relationship) of
potential analogs.

Figure 3. Structures of compounds used for dynamic light scattering.

Table 2. Measured solubility of selected compounds.

Name
Concentration of particle
appearance in water (lM)

Concentration of particle
appearance in PBS (lM)

1 1 1
2 10 10
3a 10 15
4a >100 >50
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