P(MeNCH₂CH₂)₃N: An Efficient Catalyst for the Desilylation of tert-Butyldimethylsilyl Ethers

Zhengkun Yu[†] and John G. Verkade*

Department of Chemistry, Iowa State University, Ames, Iowa 50011

Received October 13, 1999

tert-Butyldimethylsilyl (TBDMS) ethers of primary, secondary, and tertiary alcohols and phenolic TBDMS ethers are desilylated to their corresponding alcohols and phenols, respectively, in DMSO, at 80 °C, in 68–94% yield in the presence of 0.2–0.4 equiv of P(MeNCH₂CH₂)₃N. Using P(*i*-PrNCH₂-CH₂)₃N as the catalyst, 85–97% yields of desilylated alcohols were obtained from TBDMS ethers of 1-octanol, 2-phenoxyethanol, and racemic α -phenyl ethanol. These are the first examples of desilylations of silyl ethers catalyzed by nonionic bases. Both catalysts were much less effective for the desilylation of tert-butyldiphenylsilyl (TBDPS) ethers (22-45% yield) under the same conditions as used for TBDMS ethers. Possible pathways involving nucleophilic attack of the anion of the solvent molecule (generated by the catalyst) at the Si-O bond of silyl ether or a prior activation of the silyl ether by the catalyst via a P-Si interaction followed by nucleophilic attack of the solvent anion are proposed on the basis of ¹H and ³¹P NMR experimental data.

Introduction

Ever since its discovery,¹ the *tert*-butyldimethylsilyl (TBDMS) group has become one of the most popular protective groups for OH groups in organic synthesis because of the ease with which it can be introduced and removed.² Methods generally used to cleave Si-O bond in TBDMSOR ethers for parent alcohol regeneration include (1) acid-catalyzed Si-O cleavage with HF,3 AcOH,^{1,4} CF₃COOH,⁵ TsOH,⁶ HCl,^{3c,4c,7} H₂SO₄;⁸ Lewis acids such as BF39a and Me2BBr,9b and (2) Lewis basecatalyzed Si-O cleavage employing fluoride ion.^{1,3b,e,f,9a,10} Other reagents such as a carboxylic acid resin,¹¹ salts of

Synthesis, 2nd ed.; John Wiley and Sons: New York, 1991; pp 77–84, pp 161–162. (b) Kocienski, P. J. *Protecting Groups*; George Thieme Verlag: New York, 1994.

(3) (a) Newton, R. F.; Reynolds, D. P.; Finch, M. A. W.; Kelly, D. R.; Roberts, S. M. *Tetrahedron Lett.* **1979**, *20*, 3981. (b) Masamune, S.; Lu, L. D.-L.; Jackson, W. P.; Kaiho, T.; Toyoda, T. *J. Am. Chem. Soc.* 1982, 104, 5523. (c) Wetter, H.; Oertle, K. Tetrahedron Lett. 1985, 26, 5515. (d) Nyström, J.-E.; McCanna, T. D.; Helquist, P.; Iyer, R. S. Tetrahedron Lett. 1985, 26, 5393. (e) Nicolaou, K. C.; Webber, S. E. Synthesis **1986**, 453. (f) Danishefsky, S. J.; Armistead, D. M.; Wincott, F. E.; Selnick, H. G.; Hungate, R. *J. Am. Chem. Soc.* **1987**, *109*, 8117. (g) Chen, C.-T.; Chao, S.-D.; Yen, K.-C.; Chen, C.-H.; Chou, I.-C.; Hon, S.-W. J. Am. Chem. Soc. **1997**, *119*, 11341. (h) Nicolaou, K. C.; Finlay, M. R. V.; Ninkovic, S.; Sarabia, F. Tetrahedron 1998, 54, 7172. (i) Pilli, R. A.; Victor, M. M. Tetrahedron Lett. 1998, 39, 4421.

(4) (a) Kawai, A.; Hara, O.; Hamada, Y.; Shiari, T. Tetrahedron Lett. 1989, 30, 19. (b) Gmeiner, P.; Hummel, E.; Haubmann, C. Liebigs Ann. 1995, 1987. (c) Kawahara, S.; Wada, T.; Sekine, M. J. Am. Chem. Soc. **1996**, *118*, 9461.

(5) Baker, R.; Cummings, W. J.; Hayes, J. F.; Kumar, A. J. Chem. Soc., Chem. Commun. 1986, 1237.

(6) Thomas, E. J.; Williams, A. C. J. Chem. Soc., Chem. Commun. 1987, 992.

(7) (a) Cunico, R. F.; Bedell, L. J. Org. Chem. 1980, 45, 4797. (b) Bernardi, A.; Karamfilova, K.; Sanguinetti, S.; Scolastico, C. Tetrahe*dron* 1997, *53*, 13009. (c) Durand, J.; Larchevêque, M.; Petit, Y. *Tetrahedron Lett.* 1998, *39*, 5743.

(8) Franke, F.; Guthrie, R. D. Aust. J. Chem. 1978, 31, 1285.
(9) (a) Kelly, D. R.; Roberts, S. M.; Newton, R. F. Synth. Commun. 1979, 9, 295. (b) Guidon, Y.; Yoakim, C.; Morton, H. E. J. Org. Chem. 1984, 49, 3912.

 $BF_4^{-,12}$ (Me₂N)₃S[F₂SiMe₃],¹³ KO₂,¹⁴ organotin reagents,¹⁵ NBS,¹⁶ *t*-BuOOH/MoO₂(acac)₂,¹⁷ LiAlH₄,¹⁸ ceric ammonium nitrate, 19 LiOH, 20 I_2, 21 and LiCl 22 have also been reported to desilylate TBDMS ethers of alcohols. Although CCl₄/MeOH is efficient only for desilylating TBDMS ethers of primary alcohols,²³ CBr₄/MeOH is effective for deprotecting TBDMS, tert-butyldiphenylsilyl (TBDPS) and triisopropylsilyl (TIPS) ethers of primary and secondary alcohols and phenols.²⁴ Transition metalcatalyzed desilylation of TBDMS ethers is effected with PdCl₂(CH₃CN)₂,²⁵ or Sc(OTf)₃,²⁶ and CeCl₃·7H₂O/NaI was

(11) Corey, E. J.; Ponder, J. W.; Ulrich, P. Tetrahedron Lett. 1980, 21, 137

(12) (a) Barton, T. J.; Tully, C. R. *J. Org. Chem.* **1978**, *43*, 3649. (b) Metcalf, B. W.; Burkhart, J. P.; Jund, K. *Tetrahedron Lett.* **1980**, *21*, 35. (c) Ranu, B. C.; Jana, U.; Magee, A. Tetrahdron Lett. 1999, 40,

(13) Scheidt, K. A.; Chen, H.; Follows, B. C.; Chemler, S. R.; Coffey, D. S.; Roush, W. R. *J. Org. Chem.* **1998**, *63*, 6436.

(14) Torisawa, Y.; Shibasaki, M.; Ikegami, S. Chem. Pharm. Bull. 1983, 31, 2607.

(15) Otera, J.; Nozaki, H. Tetrahedron Lett. 1986, 27, 5743.

(16) Batten, R. J.; Dixon, A. J.; Taylor, R. J. K.; Newton, R. F. Synthesis 1980, 234.

(17) Lipshutz, B. H.; Pollart, D.; Monforte, J.; Kotsuki, H. Tetrahedron Lett. 1985, 26, 705.

(18) de Vries, E. F. J.; Brussee, J.; van der Gen, A. J. Org. Chem. 1994, 59, 7133.

(19) Datta, A.; Gupta, R.; Singh, V. K. Synlett 1996, 69.

(20) Greco, M. N.; Zhong, H. M.; Maryanoff, B. E. Tetrahedron Lett. 1998, *39*, 4959.

(21) Lipshutz, B. H.; Keith, J. Tetrahedron Lett. 1998, 39, 2495.

(22) Farràs, J.; Serra, C.; Vilarrasa, J. Tetrahedron Lett. 1998, 39, 327

(23) Lee, A. S.-Y.; Yeh, H.-C.; Tsai, M.-H. Tetrahedron Lett. 1995, 36 689

(24) Lee, A. S.; Yeh, H.; Shie, J. Tetrahedron Lett. 1998, 39, 5249.

^{*} To whom correspondence should be addressed. † On leave from Dalian Institute of Chemical Physics, Chinese Academy of Sciences, P.O. Box 110, Dalian 116023, P. R. China.

⁽¹⁾ Corey, E. J.; Venkateswarlu, A. J. Am. Chem. Soc. 1972, 94, 6190 (2) (a) Greene, T. W.; Wuts, P. G. M. Protective Groups in Organic

^{(10) (}a) Liotta, C. L.; Harris, H. P. J. Am. Chem. Soc. 1974, 96, 2250. (b) Carpino, L. A.; Sau, A. C. J. Chem. Soc., Chem. Commun. 1979, 519. (c) Clark, J. H. Chem. Rev. 1980, 80, 429. (d) Collington, E. W.; Finch, H.; Smith, I. J. Tetrahedron Lett. 1985, 26, 681. (e) Nakaba, T.; Fukui, M.; Oishi, T. *Tetrahedron Lett.* **1988**, *29*, 2219, 2223. (f) White,
 J. D.; Amedio, J. C., Jr.; Gut, S.; Jayasinghe, L. J. Org. Chem. **1989**, *54*, 4268. (g) Smittling, E. A.; Sawyer, J. S. *Tetrahedron Lett.* **1991**, *32*, 7207. (h) Dodge, J. A.; Lugar, C. W. *Bioorg. Med. Chem. Lett.* **1996**, 6, 1. (i) Castejon, P.; Pasto, M.; Moyano, A.; Pericas, M. A.; Riera, A. Tetrahedron Lett. **1995**, *36*, 3019. (j) Choi, Y.; Lee, K.; Hong, J. H.; Schinazi, R. F.; Chu, C. K. Tetrahedron Lett. 1998, 39, 4437. (k) Gevorgyan, V.; Quan, L. G.; Yamamoto, Y. J. Org. Chem. 1998, 63, 1244

reported to hydrolyze TBDMS, TBDPS, and TIPS ethers to alcohols in acetonitrile.²⁷ Selective deprotection of a Et₃Si group in the presence of a TBDMS group with a mesoporous silica MCM-41/MeOH system has also been reported recently.²⁸ The stability order TBDPS > TBDMS > TMS for these protective groups in silvl ethers with respect to hydrolysis has been ascribed to their decreasing steric bulk. Thus TMS ethers can be deprotected under relatively mild conditions,²⁹ TBDPS ethers are generally desilylated to their corresponding alcohols under the same conditions as those used for TBDMS ethers,² (e.g., using HF,³⁰ fluoride ion,³¹ LiOH,³² BF₃,³³ or LiCl²²) although harsher conditions and longer times are necessary in some cases.

In the course of our ongoing studies³⁴ on new synthetic applications of exceedingly strong nonionic bases and catalysts of type 1 first reported from our laboratories, we discovered that 1b is an efficient and mild catalyst for transforming a variety of alcohols to their corresponding TBDMS or TBDPS ethers using TBDMSCl or TB-DPSCl in the presence of excess Et₃N in CH₃CN or DMF (eq 1).³⁵ In a recent investigation of the conjugation of

ROH + TBDMSCI/TBDPSCI
$$\xrightarrow{\text{cat. 1b}}$$
 TBDMSOR/TBDPSOR (1)
1.1 equiv Et₃N

the TMS ether (4) of linoleyl alcohol catalyzed by 1b in CH₃CN at 40 °C, we discovered that a catalytic amount of 1b causes quantitative desilylation of 4 to give the

(25) (a) Hamamoto, T.; Hayama, T.; Katsuki, T.; Yamaguchi, M. Tetrahedron Lett. **1987**, 28, 6329. (b) Wilson, N. S.; Keay, B. A. Tetrahedron Lett. 1996, 37, 153; J. Org. Chem. 1996, 61, 2918.

(26) (a) Oyamada, H.; Kobayashi, S. Synlett 1998, 249. (b) Oriyama, T.; Kobayashi, Y.; Noda, K. *Synlett* **1998**, *10*, 1047. (27) Bartoli, G.; Bosco, M.; Marcantoni, E.; Sambri, L.; Torregiani,

E. Synlett 1998, 209.

(28) Itoh, A.; Kodama, T.; Masaki, Y. *Synlett* 1999, 357.
(29) Greene, T. W.; Wuts, P. G. M. *Protective Groups in Organic Synthesis*, 2nd ed.; John Wiley and Sons: New York, 1991; pp 68–73. (30) (a) McAuliffe, J. C.; Hindsgaul, O. *Synlett* **1998**, 307. (b) Cossy,

J.; Cases, M.; Pardo, D. G. Synlett 1998, 507.

(31) (a) Palomo, C.; Miranda, J. I.; Cuevas, C.; Odriozola, J. M. J. Chem. Soc., Chem. Commun. 1995, 1735. (b) Amigoni, S.; Schulz, J.; Martin, L.; Le Floch, Y. Tetrahedron: Asymmetry 1997, 8, 1515. (c) Haddad, M.; Imogai, H.; Larchevêque, M. J. Org. Chem. 1998, 63, 5680.

(32) Derwing, C.; Hoppe, D. Synthesis 1996, 149.
 (33) Gainelli, G.; Galletti, P.; Giacomini, D. Synlett 1998, 611.

conjugated alcohols (*trans, cis*-**5a** and *cis, trans*-**5b**) in a 1 to 1 ratio (eq 2).³⁶ Thus we speculated that our nonionic superbases **1b** and **1c** might be useful for desilylating silvl ethers.

Herein we report for the first time an efficient catalytic procedure for removing the protective TBDMS group from a variety of TBDMSOR ethers using a nonionic base, namely, 1b as the catalyst. Some desilylations of TBDPSOR ethers using a nonionic base, namely **1b**, are also described and several desilylation reactions employing 1c as the catalyst are also presented. Possible pathways are proposed for these desilylations.

Results and Discussion

Proazaphosphatranes 1 are powerful nonionic bases forming the remarkably stable azaphosphatrane cations **2a**-c as their chloride salts. The order of basicity is **1b** < 1c, and 1b has been shown to be capable of deprotonating acetonitrile to its corresponding anion ⁻CH₂CN,³⁷ which initiates a variety of reactions.³⁴ The ¹H and ³¹P NMR spectra of **1b** (or **1c**) in DMSO also indicate in the present work that **1b** and **1c** deprotonate this solvent.

The nucleophilicity and basicity of 1a-c stems from transannular bond formation between the phosphorus atom and the bridgehead nitrogen atom as shown in cation 2. Partial transannulation in species of type 3

plays an important role in the formation and stability of these cationic intermediates in catalytic reactions.^{340,p,35,38b} Thus it is plausible that anion $\mathbf{A} = -CH_2CN$ or ⁻CH₂S(O)CH₃] generated by **1b** or **1c** via solvent deprotonation nucleophilically attacks the Si-O bond of a silyl ether to form TBDMSA (or TBDPSA) while liberating RO⁻ which extracts a solvent proton to form the deprotected alcohol (Scheme 1). ³¹P NMR experiments in CD₃S-(O)CD₃ revealed that some **1b** (or **1c**) and **2b** (or **2c**) were present during the entire course of the reaction [for deuterated base, δ ca. -10.6 ppm (t, ${}^{1}J_{PD} \simeq 140$ Hz) triplet; for free base, (δ ca. 110–120 ppm (s)]. Interestingly, during the reaction of TBDMS ether 7 [i.e.,

^{(34) (}a) Kisanga, P.; D'Sa, B.; Verkade, J. G. J. Org. Chem. **1998**, 63, 10057. (b) Wang, Z.; Verkade, J. G. Heteroatom Chem. **1998**, 9, 687. (c) Wang, Z.; Verkade, J. G. *Tetrahedron Lett.* **1998**, *39*, 9331. (d) Kisanga, P. B.; McLeod, D.; D'Sa, B. A.; Verkade, J. G. *J. Org. Chem.* 1999, 64, 3091. (e) Ilankumaran, P.; Verkade, J. G. J. Org. Chem. 1999, 64, 3087. (f) Kisanga, P. B.; Verkade, J. G. J. Org. Chem. 1999, 64, 4298. (g) Liu, X.; Yu, Z.; Verkade, J. G. J. Org. Chem. 1999, 64, 4840, 8058. (h) Wang, Z.; Kisanga, P.; Verkade, J. G. J. Org. Chem. 1999, 64, 6559. (i) D'Sa, B. A.; Kisanga, P.; Verkade, J. G. J. Org. Chem. 1999, 64, 6559. (i) D'Sa, B. A.; Kisanga, P.; Verkade, J. G. J. Org. Chem. 1999, 64, 6559. (i) D'Sa, B. A.; Kisanga, P.; Verkade, J. G. J. Org. Chem. 1999, 64, 6559. (i) D'Sa, B. A.; Kisanga, P.; Verkade, J. G. J. Org. Chem. 1999, 64, 6559. (i) D'Sa, B. A.; Kisanga, P.; Verkade, J. G. J. Org. Chem. 1999, 64, 6559. (i) D'Sa, B. A.; Kisanga, P.; Verkade, J. G. J. Org. Chem. 1999, 64, 6559. (i) D'Sa, B. A.; Kisanga, P.; Verkade, J. G. J. Org. Chem. 1999, 64, 6559. (i) D'Sa, B. A.; Kisanga, P.; Verkade, J. G. J. Org. Chem. 1999, 64, 6559. (i) D'Sa, B. A.; Kisanga, P.; Verkade, J. G. J. Org. Chem. 1999, 64, 6559. (i) D'Sa, B. A.; Kisanga, P.; Verkade, J. G. J. Org. Chem. 1999, 64, 6559. (i) D'Sa, B. A.; Kisanga, P.; Verkade, J. G. J. Org. Chem. 1999, 64, 6559. (i) D'Sa, B. A.; Kisanga, P.; Verkade, J. G. J. Org. Chem. 1999, 64, 6559. (i) D'Sa, B. A.; Kisanga, P.; Verkade, J. G. J. Org. Chem. 1999, 64, 6559. (i) D'Sa, B. A.; Kisanga, P.; Verkade, J. G. J. Org. Chem. 1999, 64, 6559. (i) D'Sa, B. A.; Kisanga, P.; Verkade, J. G. J. Org. Chem. 1999, 64, 6559. (i) D'Sa, B. A.; Kisanga, P.; Verkade, J. G. J. Org. Chem. 1999, 64, 6559. (i) D'Sa, B. A.; Kisanga, P.; Verkade, J. G. J. Org. Chem. 1999, 64, 6559. (i) D'Sa, B. A.; Kisanga, P.; Verkade, J. G. J. Org. Chem. 1999, 64, 6559. (i) D'Sa, B. A.; Kisanga, P.; Verkade, J. G. J. Org. Chem. 1990, 64, 6559. (i) D'Sa, B. A.; Kisanga, P.; Verkade, J. G. J. Org. Chem. 1990, 64, 6559. (i) D'Sa, B. A.; Kisanga, P.; Verkade, J. G. J. Org. Chem. 1990, 64, 6559. (i) D'Sa, B. A.; Kisanga, P.; Verkade, J. G. J. Org. Chem. 1990, 64, 6559. (i) D'Sa, B. A.; Kisanga, P.; Verkade, J. G. J. Org. Chem. 1990, 64, 6559. (i) D'Sa, B. A.; Kisanga, P.; Verkade, J. G. J. Org. Chem. 1990, 64, 6559. (i) D'Sa, B. A.; K 62, 4827. (k) Mohan, T.; Arumugam, S.; Wang, T.; Jacobson, R. A.; Verkade, J. G. *Heteroatom Chem.* **1996**, *7*, 455. (l) D'Sa, B. A.; Verkade, J. G. J. Org. Chem. 1996, 61, 2963. (m) Tang, J. S.; Mohan, T.; Verkade, J. G. J. Org. Chem. 1994, 59, 4931. (n) Tang, J. S.; Verkade, J. G. J. Org. Chem. 1994, 59, 7793. (o) Verkade, J. G. Coord. Chem. Rev. 1994, 137, 233; Acc. Chem. Res. 1993, 26, 48317. (p) Tang, J. S.; Verkade, J. G. Angew. Chem., Int. Ed. Engl. 1993, 32, 896. (q) Laramay, M. A. H.;

Verkade, J. G. Z. Anorg. Allg. Chem. 1991, 605, 163.
 (35) (a) D'Sa, B. A.; Verkade, J. G. J. Am. Chem. Soc. 1996, 118, 12832. (b) D'Sa B. A.; McLeod, D.; Verkade, J. G. J. Org. Chem. 1997, 62. 5057.

⁽³⁶⁾ Yu, Z. K.; Verkade, J. G. J. Org. Chem., to be submitted.
(37) Tang, J. S.; Verkade, J. G. J. Am. Chem. Soc. 1993, 115, 1660.
(38) (a) D'Sa, B. A.; Kisanga, P.; McLeod, D.; Verkade, J. G. Phosphorus, Sulfur Silicon 1997, 124, 223. (b) Wróblewski, A.; Pinkas, J.; Verkade, J. G. Main Group Chem. 1995, 1, 69.

CH₃(CH₂)₆CH₂OTBDMS] with **1b** (40 mol %) in CD₃S-(O)CD₃ at room temperature, three sets of triplets were observed at low field in the ¹H NMR spectra of the reaction mixture. These triplets are assigned to three different types of $-OCH_2$ - groups. Thus the triplet at 3.55 ppm is assigned to the starting silvl ether and the triplet at 3.35 ppm is associated with the deprotected alcohol. These assignments were arrived at by comparing these spectra with those of the starting silvl ether and the deprotected alcohol, respectively. The third triplet at 3.43 ppm is assigned to a new species formed during the reaction that may be an intermediate such as 26 in Scheme 1 or 27 in Scheme 2. As the reaction proceeded and after more than half the amount of the starting silvl ether (88.3% conversion of 7 at 71 h) became deprotected, this new triplet became undetectable due to the low concentration of the intermediate. For the same reaction in DMSO- d_6 at 80 °C, this triplet was also observed, and again it disappeared as the reaction reached completion. Similar results were obtained in the reactions of 8 and 14 with 1b at room temperature or at a higher temperature (e.g., 50 °C) although the signals (a third triplet peak for 8 and a third quartet peak for 14) were not so strong as those in the former reaction. Although ³¹P NMR spectra of these reactions showed no convincing evidence for the formation of 27, our previous investigations revealed the possible formation of analogues of 27, i.e., cationic intermediates of type 3.340,p,35,38a Using the relatively sterically hindered silvl ether (\pm) -15 as a substrate, no similar phenomenon was observed in the ¹H NMR spectra of the reaction mixture in DMSO-*d*₆ whether the reaction temperature was ambient or 80 °C, demonstrating that steric factors probably play an important role in the formation of an intermediate such as 27. It should be noted that the steric hindrance order of 1b and 1c is 1c > 1b. TBDMSA or TBDPSA were presumably formed although efforts to isolate these species were not successful. Thus repeated attempts to separate the mixture by preparative TLC resulted in a poorly developed brown strip near the starting line that upon collection and washing with CHCl₃ and filtration was shown by NMR spectroscopy to contain a largely uninterpretable mixture.

Reactions carried out in deuterated solvents under the same reaction conditions showed the order DMSO- d_6 > CD₃CN > CD₃COCD₃ ≥ CD₃OD ≫ C₆D₆ for the relative rates of desilylation of TBDMS ethers catalyzed by **1b**. It is known that some primary TBDMS ethers (such as allylic, homoallylic, benzylic, and aryl derivatives) can be hydrolyzed in DMSO/H₂O at 90 °C although all other primary and secondary TBDMS ethers remain unaffected under these conditions.³⁹ In addition, it was noted that

desilvlation of (\pm) -13 catalyzed by 1b was more efficient in DMSO than in CH₃CN (Table 1). It is perhaps not unreasonable to expect that the strong polarity of DMSO molecules may favor the formation of alcohols from lesspolar silvl ethers. Thus DMSO was deemed to be the reaction solvent of choice. That desilylations under the conditions described here are not proceeding by ordinary base-promoted silyl cleavage is supported by the failure of TBDMS ethers such as (\pm) -13 to desilvlate in the presence of 40 mol % **1b** in C_6D_6 at 50 °C over 62 h. Evaporation of the filtrate followed by ¹H NMR analysis revealed the presence of DMSO, protonated catalyst (presumably as the A salt) and a TBDMS-containing compound (presumably TBDMSA). The strong polarity of the components of this mixture may be responsible for the poor separation.

Complete desilylation of linoleyl TBDMS ether **6** was accompanied by the formation of a 1:1 ratio of conjugated alcohols **5a** and **5b** in 90% yield (reaction 3 and Table 1). The TMS analogue of **6**, namely **4**, is also easily desilylated and isomerized to produce the same alcohols under relatively milder conditions using CH_3CN as the solvent at 40 °C in the presence of **1b** or **1c**.³⁶ On the basis of that study it is suggested that possible intermediates in the reaction of **6** and **1b** or **1c** in DMSO are those shown in reaction 3. Competitive cleavage of the

Si-O bond and isomerization of CH2-separated carboncarbon double bond lead to the conjugated TBDMS ethers 28a and 28b, and linoleyl alcohol (29). The desilylation of 28a and 28b and isomerization of 29 then give rise to the final products 5a and 5b. Another possible intermediate is the alkoxyl anion of 29 since superbases 1b and 1c are known to deprotonate alcohols.^{36,38} For TBDMS ethers 7-13 derived from primary alcohols, 80-94% desilylation yields were achieved. Silyl ethers 14-18 derived from secondary alcohols, silvl ethers 19-21 derived from tertiary alcohols, and phenolic ethers 22 and **23** were desilylated to their corresponding products in moderate to good yields (Table 1). Catalyst 1c was also efficient for desilvlating TBDMS ethers 7, 8, and (\pm) -15 to their corresponding products in 85–97% yield (Table 2). Although 1b and 1c are efficient catalysts for deprotecting TBDMS ethers, both of them failed to desilylate TBDPS ethers efficiently. TBDMS ether (e.g., 22 in Table 1) was much more efficiently desilylated than its TBDPS ether, i.e., 25, under the same conditions (Table 2). The desilylation of 24 and 25 provided products in only 22 to 45% yields, respectively (Table 2). The greater steric hindrance of the TBDPS group compared with that of the TBDMS group coupled with the bulkiness of 1b and **1c** may account for the low yields in these cases.

Experimental Section

Acetonitrile was distilled over P_4O_{10} under nitrogen. The nonionic superbases $1b^{34q}$ and $1c^{38b}$ were prepared according to our previously published methods although 1b is commercially available.⁴⁰ TBDMS and TBDPS ethers were pre-

Table 1. Desilylation of TBDMS Ethers to Corresponding Alcohols Using 1b as a Catalyst^a

6	0.3	80/36	10:1	90 ^e	(±)- 15	0.2	80/24	5:2	89
7	0.2	80/34	5:1	94	16	0.3	80/36	10:1	68
8	0.3	80/36	5:1	90	(±)- 17	0.3	80/36	5:2	85
9	0.3	80/36	5:1	84	(±)- 18	0.3	80/36	5:1	89
10	0.3	80/30	5:1	80	19	0.4	80/27	5:2	68
11	0.3	80/36	5:1	89	20	0.3	80/36	5:1	87
12	0.25	80/36	5:1	83	21	0.3	80/36	5:1	81
(±)- 13	0.2	80/24	5:1	90	22	0.3	80/24	5:1	94
	0.4	80/36	5:1	81 ^f	23	0.2	80/24	5:1	85
14	0.2	80/19	5:2	80					

^{*a*} No attempt was made to maximize yields by optimizing reaction times, temperatures, and the concentrations of **1b**. The solvent is DMSO except where indicated. ^{*b*}The preparation of all the ethers was reported in our previous papers.³⁵ ^{*c*}*n*-Hexane/THF. ^{*d*}Isolated yield was obtained by preparative TLC on silica gel. ^{*c*}The ratio of **5a**/**5b** was ca. 1/1 as determined by ¹H NMR spectroscopy and GC and by comparison with such spectra reported in the literature.³⁶ ^{*f*}The solvent was CH₃CN.

 $R^1 = TBDMS, R^2 = TBDPS$

silyl ether ^b	equiv of 1b or 1c	temp/time (°C/h)	eluent ratio ^c	alcohol yield (%) ^d
24	1b (0.4)	80/36	5:1	22
24	1c (0.4)	80/36	5:1	25
25	1b (0.3)	80/24	10:1	30
25	1b (0.3)	80/36	10:1	39
25	1c (0.3)	80/36	10:1	45
7	1c (0.2)	80/24	5:1	85
8	1c (0.2)	80/36	5:1	95
(±)- 15	1c (0.2)	80/36	5:1	97

^{*a*} No attempt was made to maximize yields by optimizing reaction times, temperatures, and the concentrations of **1b** and **1c**. The solvent was DMSO. ^{*b*}The preparations of the ethers were reported in our previous papers.³⁵ ^c*n*-Hexane/THF. ^{*d*}The isolated yield was obtained by TLC on silica gel.

pared as reported earlier from our laboratories. 35 The desily-lated products were characterized by mass and NMR spectroscopies and were found to be >95% pure by ¹H NMR analysis.

Moreover, ¹H and ¹³C NMR spectra of all the isolated products except $5a/5b^{35}$ were compared with those of the authentic samples or those in the literature.⁴¹

General Procedure for Desilylation. DMSO (or CH₃CN as indicated in Table 1) (4 mL) was added under nitrogen to a 25 mL round-bottom flask charged with catalyst (as indicated in Tables 1 and 2). Then the silyl ether substrate (1.0 mmol) was introduced through the rubber septum via a syringe. The reaction mixture was stirred at 80 °C for the time indicated in Tables 1 and 2, and after cooling the mixture to room temperature, it was poured into 150 mL of water followed by extraction with CHCl₃ (5 × 40 mL). The organic layer was dried overnight with MgSO₄ and then filtered. The organic phase was concentrated to ca. 1.5 mL by rotary evaporation and subjected to TLC separation on silica gel with the appropriate eluent as indicated in Tables 1 and 2. The NMR reactions were performed in a 5 mm NMR tube sealed with a rubber septum in a manner similar to that described above.

Acknowledgment. The authors thank the Center for Advanced Technology Development of Iowa State University and the Iowa Soybean Promotion Board for grants in support of this research, and they thank Dr. P. B. Kisanga for kindly providing a sample of **1c**.

Supporting Information Available: Compound characterizational data, NMR peak assignments, and copies of ¹H NMR spectra. This material is available free of charge via the Internet at http://pubs.acs.org.

JO991591I

⁽⁴⁰⁾ Strem Chemical Co.

⁽⁴¹⁾ The Aldrich Library of ¹³C and ¹H NMR Spectra, 1993, Vol. 1.