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ABSTRACT: An iron−sulfur complex formed by the simple mixture of FeCl3 with S3
•−

generated in situ from K2S is developed and applied to selective aerobic oxidation of
terminal alkenes. The reaction was carried out under an atmosphere of O2 (balloon) and
could proceed on a gram scale, expanding the application of S3

•− in organic synthesis.
This study also encourages us to explore the application of an Fe−S catalyst in organic
reactions.

The selective oxidative cracking of alkenes has a wide range
of applications in the fields of organic synthesis,

pharmaceuticals, agrochemicals, and materials.1 For example,
it can realize the introduction of oxygen functionalities into
molecules, the deprotection of functional groups, and the
degradation of macromolecules.2 Ozonolysis with ozone as an
oxidant is still the most used method for this transformation,
despite there being many serious safety issues with the method
and the high requirements for reaction equipment.3 In
addition, a chemical oxidation with stoichiometric oxidants,
for example, KMnO4,

4 OsO4,
5 PhIO/HBF4,

6 m-CPBA,7

H2O2,
8 and TBHP,9 has been considered as an effective

alternative. However, these reagents are toxic themselves, and a
large amount of waste is generated, with some being highly
toxic. In recent years, the development of environmentally
friendly oxidation protocols is attracting a growing amount of
attention,10 especially methods based on clean oxidants in
combination with metal catalysts.10,11 As an oxidant, molecular
oxygen, which has high atomic efficiency and economy, has
attracted a great deal of attention (Scheme 1a).12

Fe4S4 clusters such as [2Fe-2S], [3Fe-4S], and [4Fe-4S]
clusters widely exist in various proteins with important
biological activities, which are clarified in bioinorganic
chemistry.13 Much attention have been paid to the iron−
sulfur protein structures to understand their bioactivities;14

however, the application of iron−sulfur clusters or iron−sulfur
protein (Figure 1) in organic reactions15 has not been well
studied. It is more desirable to develop a simple protocol for
the preparation of iron−sulfur clusters or complexes and apply
them in organic reactions. In addition to the Fe4S4 clusters,
iron-containing compounds have been widely used as catalysts
because of their high iron content, low toxicity, low cost, and
easy availability. However, all of the catalysts reported so far
require an oxidant that is more active than molecular oxygen
(Scheme 1b). For example, when an iron−salon complex
promoted the oxidation of alkenes in low yields, an excess of
H2O2 was needed.16 In the presence of pyridine-carboxylic

acids, a simple Fe(II) salt can selectively oxidize alkenes to
aldehydes with PhIO as the oxidant and to acetal using
H2O2.

17 A heterogeneous iron catalyst was reported, which
catalyzed the oxidation of styrene by H2O2 with very good
selectivity; however, the yield was low.18
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Scheme 1. Selective Oxidation of Terminal Alkenes via (a) a
Coventional Oxidation Method, (b) Iron-Catalyzed
Oxidation, (c) a Conventional Application of S3

•−, and (d)
This Work
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S3
•− was discovered more than 40 years ago and can be

easily formed by the reaction of elemental sulfur with KOH in
DMF at room temperature.19 Recently, applications of S3

•−

species for the synthesis of organic compounds have gradually
increased, but almost all of them are used in the synthesis of
organic sulfur compounds (Scheme 1c).20 The new
applications in the conversion of other functional groups
involving S3

•− have not yet been reported. It is well-known that
iron−sulfur proteins can be used as beneficial redox catalysts
involving electron transfer.21 Encouraged by research about the
“iron−sulfur world” hypothesis,21a we hypothesize that a
system similar to iron−sulfur protein can accelerate the
selective aerobic oxidation of terminal alkenes. Herein, we
demonstrate an iron−sulfur complex, formed by the selective
aerobic oxidation of terminal alkenes to carbonyl compounds
(Scheme 1d) with a simple mixture of FeCl3 with S3

•−

generated in situ from K2S, promoted the reaction.
Initially, ethene-1,1-diyldibenzene 1a was treated with K2S

(2.0 equiv), K2CO3 (1.0 equiv), and FeCl3 (20 mol %) in
DMF at 80 °C for 8 h. From this reaction, benzophenone 2a
was formed in 91% yield (Table 1, entry 1). To improve the
efficiency, we tried other diffirent catalysts, changed the
amount of catalyst, and found that FeCl3 (20 mol %) has the
best catalytic effect (Table 1, entries 2−6). Next, DMSO and
DMA were tried as the reaction medium, but the effect on the

reaction is not as good as that of DMF (entries 7 and 8). In
addition, changing the temperature and the amount of K2S
cannot improve the yield (Table 1, entries 9−12). Intriguingly,
when K2CO3 was removed from the reaction mixture, the yield
increased to 99% (Table 1, entry 13). Finally, we want to find
the optimal reaction time (Table 1, entry 14). When the
reaction time was decreased to 12 h, the material remained,
and the target product was obtained with an isolated yield of
86%. After a series of optimizations of the conditions, the
optimized reaction conditions were obtained: ethene-1,1-
diyldibenzene 1a (0.3 mmol), K2S (0.6 mmol), and FeCl3
(20 mol %) in DMF (2 mL) at 80 °C for 14 h.
With the optimal reaction conditions in hand, the substrate

scope for the synthesis of 2 was investigated. First, we
investigated the reaction activity of 1,1-diarylethylene sub-
strates. The results summarized in Scheme 2 show that 1 with

just one electron-donating group (EDG) such as methyl,
phenyl, or methoxy or an electron-withdrawing group (EWD)
such as chloro, bromo, or trifluoromethyl at the para or meta
positions took part in this reaction, smoothly affording 2d−2k
in good yields. However, when there is a substituent in the
ortho position, the yield is significantly reduced, and target
products 2b and 2c are obtained in moderate yields. In
addition, when there are two substituents on the substrate,
whether the substituents are on the same benzene ring or on
two benzene rings, the target product (2l−2n) can be obtained
with yields of 88−96%. To our delight, 1,4-bis(1-phenylvinyl)-
benzene can be converted into target product 2o in 86% yield
under the action of K2S and FeCl3. Notably, when there are
two kinds of alkenes in the reactants, they can selectively
oxidize aryl-substituted alkenes. For example, 1-(allyloxy)-4-(1-
phenylvinyl)benzene can selectively afford target product 2p in
a good yield of 84%.
Next, other substituted alkenes have also been studied, and

the results are listed in Scheme 3. First, when 1,1-arylalkyl-
substituted alkenes were used as substrates, the effect on the

Figure 1. Fe−S cluster and Fe−S compelx catalyst.

Table 1. Optimization of the Reaction Conditionsa

entry catalyst (mol %) temp (°C) K2S (equiv) yield (%)b

1 FeCl3 (20) 80 2.0 91
2 Fe(OAc)2 (20) 80 2.0 84
3 Cu(OAc)2 (20) 80 2.0 trace
4 FeCl3 (10) 80 2.0 84
5 FeCl3 (5) 80 2.0 37
6 − 80 2.0 trace
7c FeCl3 (20) 80 2.0 83
8d FeCl3 (20) 80 2.0 51
9 FeCl3 (20) 60 2.0 70
10 FeCl3 (20) 100 2.0 88
11 FeCl3 (20) 80 1.0 38
12 FeCl3 (20) 80 − NR
13e FeCl3 (20) 80 2.0 99
14f FeCl3 (20) 80 2.0 86

aRaction conditions: 1a (0.30 mmol), K2S (0.60 mmol), catalyst (20
mol %), K2CO3 (0.3 mmol), solvent (2 mL), O2 (1 atm), 14 h.
bIsolation yields. cThe solvent is DMA. dThe solvent is DMSO.
eWithout K2CO3.

fTime of 12 h.

Scheme 2. Substrate Scope of 1,1-Diaryl-Substituted
Alkenesa−c

aRaction conditions: 1 (0.30 mmol), K2S (0.60 mmol), FeCl3 (20
mol %), DMF (2 mL), O2 (1 atm), 80 °C, 14 h. bIsolated yields. c1
(0.30 mmol), K2S (1.20 mmol), FeCl3 (40 mol %), DMF (2 mL), O2
(1 atm), 80 °C, 14 h.
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reaction is obviously worse, and we can obtain the target
products (2q−2s) in only 15−26% yields. Next, 2-(1-
phenylvinyl)thiophene and 2-(1-phenylvinyl)pyridine can be
converted into the corresponding target products 2t and 2u in
54% and 74% yields, respectively. In addition, different styrene
compounds (2v−2y) were used for the transformation, and the
conversion rates were known to be 47−62%. Further study
showed that the alkenes without an aryl substitution and 1,2-
diphenylethene do not react smoothly.
To evaluate the application of this oxidation reaction, we

scaled up the template reaction to 10 mmol and obtained 1.7 g
of target product 2a in 95% yield (see the Supporting
Information for more details). The reaction was allowed to
proceed under argon conditions, and it was found that the
reaction did not occur (see the Supporting Information for
more details). Because epoxide B is suspected to be an
intermediate in the reaction, B is allowed to react under
standard conditions. Expectedly, target product 2a can be
obtained with a separation yield of 64%.
To gain some insight into the mechanism of the reaction, an

electron paramagnetic resonance (EPR) experiment was
carried out (see the Supporting Information for more details).
At room temperature, strong free radical signals can be
observed in the system, which indicates that the reaction may
involve free radicals. To our delight, a strong single EPR signal
(g = 2.027) that is very similar to the reported S3

•− detected by
the DMF solution of Na2S·9H2O and elemental sulfur at room
temperature can be detected in the DMF solution of K2S.

17a

However, the signal changed after the addition of FeCl3 to a
new signal (g = 2.348). A significant Fe(III) signal can be
detected in the DMF solution of FeCl3, and the addition of
K2S will make the signal disappear. We speculate that K2S may
combine with Fe(III) to form a Fe−S complex to promote the
reaction. We use N-methylindole as a formaldehyde trapping
agent and obtain 2a in 97% yield and 3a in 26% yield,
indicating that formaldehyde may be formed in the reaction
system (see the Supporting Information for more details).
On the basis of the experimental results presented above and

literature reports, a plausible reaction mechanism is proposed
in Scheme 4. S3

•− generated in situ from K2S reacts with FeCl3

to produce divalent iron−sulfur complex Fe(II)Sx. Subse-
quently, Fe(II)xSy promotes the conversion of oxygen (O2)
into superoxide anion radical (O2

•−) with the formation of a
trivalent iron−sulfur complex Fe(III)Sy. The oxidation of 1,1-
diphenylethylene generated by Fe(III)Sy gives radical cation
intermediate A and regenerates Fe(II)Sx. Then, a cycloaddition
between O2

•− and radical cation intermediate A affords an
epoxide intermediate B or dioxetane C. The subsequent C−C
bond cleavege of B or C gives the desired product 2a.22

In summary, a selective oxidation reaction of terminal olefins
promoted by S3

•− catalyzed by Fe(III) is discovered. The
reaction is carried out under an oxygen atmosphere and can be
carried out in units of grams, thereby providing a convenient
and practical method for converting terminal olefins into
carbonyl compounds and expanding the application of S3

•− in
organic synthesis.
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