Tetrahedron Letters 56 (2015) 639-641

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Liquid carbon dioxide as an effective solvent for immobilized *Candida antarctica* lipase B catalyzed transesterification

Hai Nam Hoang, Tomoko Matsuda*

Department of Bioengineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan

ARTICLE INFO

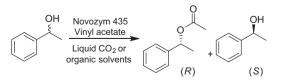
Article history: Received 11 November 2014 Revised 5 December 2014 Accepted 14 December 2014 Available online 19 December 2014

Keywords: Liquid carbon dioxide Asymmetric synthesis Candida antarctica lipase B Transesterification

Introduction

The scope of biotransformation, particularly in asymmetric synthesis, has been extended through the use of enzymes in organic solvents¹⁻³ as well as in 'green' nonaqueous media, such as ionic liquids⁴ and supercritical fluids.⁵⁻⁷ Carbon dioxide, which has a number of positive impacts on green chemistry as a nonflammable, nontoxic, abundant, and generally chemically inert source, has been intensively studied in its supercritical phase as an alternative solvent for enzymatic reactions.⁸ Some of the advantages of using supercritical CO₂ as a solvent include low viscosity, low surface tension, and ease of product recovery. At below critical temperature (31 °C), carbon dioxide can exist in a liquid phase, which can also be employed as a solvent for chemical reactions.^{8,9} However, to the best of our knowledge, no reports exist on liquid CO₂ as a practical solvent for biocatalysts. Because carbon dioxide in a liquid phase is intrinsically different from its supercritical phase in many physical properties as a solvent, the enzymatic behaviors in liquid and supercritical CO₂ could be very different. The apparent benefit of using liquid CO₂ is that it can be maintained under relatively modest pressure (e.g., 4.5 MPa at 10 °C) that reduces the cost of specialized equipment for high-pressure (over 7.4 MPa) reaction in supercritical CO₂. Furthermore, it can be employed at low temperature, which has the potential to enhance the enatioselectivity by the low-temperature strategy.^{10–12}

ABSTRACT

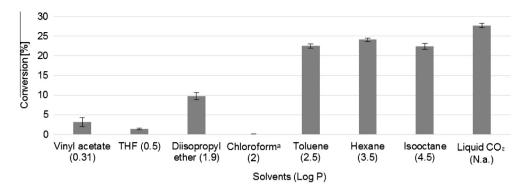

The transesterification of alcohols catalyzed by immobilized *Candida antarctica* lipase B (Novozym 435°) was found to be effectively enhanced using a liquid CO₂ medium when it was compared with that using organic solvents. The large-scale kinetic-resolution of secondary alcohol by the immobilized lipase was also successfully performed with a continuous packed-column reactor that stably afforded corresponding enantiopure products. Herein, liquid CO₂ was proved for the first time to be superior to conventional organic solvents for biotransformation.

© 2014 Elsevier Ltd. All rights reserved.

To exploit the potential of liquid CO_2 as a solvent for biotransformation, the transesterification of alcohols catalyzed by immobilized *Candida antarctica* lipase B (Novozym 435[®]) was chosen as a model reaction. We found that the liquid CO_2 medium is superior to organic solvents. A liquid CO_2 fluid was also successfully employed for a flow system with a packed-column reactor for the continuous kinetic resolution of *rac*-1-phenylethanol and steadily afforded enantiopure products.

Results and discussion

First, the kinetic resolution of *rac*-1-phenylethanol catalyzed by Novozym $435^{\text{(8)}}$ was performed in liquid CO₂ and in organic solvents using vinyl acetate as the acyl donor in a batch system (Scheme 1). As shown in Figure 1, as expected, the activity of the lipase is closely related to the solvent hydrophobicity (represented in log *P* value) where the more hydrophobic solvents generally showed higher yields. Interestingly, the lipase exhibited the highest transesterification activity with excellent enatioselectivity (ee >99%) in liquid CO₂, followed by hexane and toluene. Liquid CO₂



CrossMark

etrahedro

^{*} Corresponding author. Tel./fax: +81 45 924 5757. E-mail address: tmatsuda@bio.titech.ac.jp (T. Matsuda).

Figure 1. Effect of solvents on Novozym 435[®] catalyzed kinetic resolution of *rac*-1-phenylethanol. Reaction conditions:¹⁵ Substrate 0.83 mmol, vinyl acetate 5.4 mmol, Novozym 435[®] 5 mg, solvent 10 ml, 20 °C, 2 h, pressure for liquid CO₂ 6.5 MPa. Ee of the product (acetate) was found to be excellent (ee_p >99%) in all media. ^aNo reaction occurred due to insufficient mixing of the enzyme and substrate since the density of the solvent greatly exceeds that of the immobilized enzyme. N.a.: not available. Dielectric constants of selected solvents: liquid CO₂ (20 °C, 6 MPa) 1.48, hexane 1.88, isooctane 1.94, toluene 2.38, diisopropyl ether 3.88, chloroform 4.81, THF 7.58.

was reported to have very similar behaviors with a hydrocarbon solvent with very low polarizability.¹³ The high activity of the lipase in liquid CO₂ as well as in solvents with high log*P* values could be partly explained by the inability of hydrophobic solvents to strip off the essential water present on the outer layers of the enzyme.¹⁴

To further investigate the enhancement effect caused by liquid CO_2 using different substrates, the transesterification of various aromatic, aliphatic, and allylic primary and secondary alcohols was carried out in liquid CO_2 and in hexane (Table 1). The transesterification rates of 1-phenylethanol, 2-phenylethanol, and 1-octen-3-ol in liquid CO_2 were comparable with those observed in hexane (entries 1–3 and 10). Notably, with 1–, 2,– and 3-phenyl-

propanols and 2-octanol, liquid CO₂ promoted the reactions much more effectively than hexane (entries 4–7 and 11) with statistically significant differences (p <0.05). With substrates having longer side-chains, 1-phenylbutanol and 1-phenylpentanol, there was no reaction observed in hexane but some reactions in liquid CO₂ (entries 8 and 9). Our previous work¹⁶ also found that the activity of Novozym 435[®] toward selected substrates was also enhanced in supercritical CO₂. This agreement supports the idea that the heterogeneous distribution of water and CO₂ molecules on certain regions of the lipase could efficiently facilitate the diffusion of certain substrates into the catalytic active site.¹⁷ Furthermore, the difference was even more remarkable at lower temperature with the reaction with 1-phenyl-2-propanol (entries 5 and 6), but not in the

Tal	ble	1

Novozym 435° catalyzed transesterification of various alcohols in hexane or liquid CO2 using a batch reactor^a

Entry	Substrates	Solvent	Time (h)	Temp (°C)	Products	Yield (%)	ee _p ^c (%) (Config.)	E-Value
1 2	OH Ph	Hexane Liquid CO ₂ Hexane	1 2	20 5	OAc T	31 32 28	>99 (R) >99 (R) >99 (R)	>200 >200 >200
		Liquid CO ₂				30	>99 (R)	>200
3 ^b	Ph	Hexane Liquid CO ₂	1	20	Ph	70 70	_	_
4	OH Ph	Hexane Liquid CO ₂	18	20	OAc Ph	4 25	>99 (R) >99 (R)	N.d. >200
5	OH	Hexane Liquid CO ₂	4	20	QAc	10 27	97 (<i>R</i>) 96 (<i>R</i>)	62 74
6	Ph	Hexane Liquid CO ₂	18	5	Ph	7 34	97 (R) 96 (R)	70 80
7 ^b	Ph	Hexane Liquid CO ₂	0.5	20	Ph OAc	82 93		_
8	OH Ph	Hexane Liquid CO ₂	60	20	OAc Ph	0 6	N.d.	N.d.
9	OH Ph	Hexane Liquid CO ₂	100	20	Ph	0 4	N.d.	N.d.
10	OH	Hexane Liquid CO ₂	2	20	OAc 	21 21	>99 (S) >99 (S)	>200 >200
11	OH	Hexane Liquid CO ₂	1	20	OAc	33 40	>99 (R) >99 (R)	>200 >200

^a Reaction conditions:¹⁵ alcohol (0.40 mmol) with vinyl acetate (2.2 mmol) and Novozym 435[®] (10 mg) in 10 ml hexane or liquid CO₂ (6.5 MPa) at 20 °C. Product yields and ee values are averages of at least three reaction runs determined by GC analysis. Absolute configurations were determined by comparing the optical rotation values with data from the literature.

^b Novozym 435 (5 mg).

^c ee of the products (acetates) N.d.: not determined due to the low conversion observed.

Cycle No. ^b	In-flux rate ^c (mg/min)	Recovered ^d (g)	ee _s ^e (%)	ee _p ^e (%)	c ^f (%)	<i>E</i> -Value ^g	E-Factor ^h
1	18.72	7.08	>99	>99	49.9	>200	<0.3
2	18.75	7.27	>99	>99	50.0	>200	<0.3
3	18.62	6.85	>99	>99	49.9	>200	<0.3

Novozym 435[®] catalyzed kinetic resolution of rac-1-phenylethanol with a continuous flow of liquid CO₂ and substrates into a packed-column reactor^a

^a Reaction conditions¹⁹: immobilized enzyme 1.6 g, CO_2 flow rate 1.0 mL min⁻¹, substrate flow rate 0.020 ml min⁻¹ (volume ratio of *rac*-1-phenylethanol/vinyl acetate = 2:1), 20 °C, 6.5 MPa.

^b One cycle consists of four steps: pressurization and stabilization for 1 h; sampling for 8 h; washing with liquid CO₂ flow for 1 h; depressurization to 0.1 MPa and storing for 14 h at ambient conditions.

^c The influx was monitored by a precision balance and measured by the amount of substrate mixture sent over time.

^d Recovered outflux was collected at the stationary state for 8 h.

^e ee_s of the substrate (alcohol) and ee_p of the product (acetate) were determined by chiral GC analysis.

^f Conversion (c) was calculated from ee_s and ee_p (and confirmed by independent calculations from the ratio of the integral of the alcohol and the corresponding acetate signals in the ¹H NMR spectrum).

 g^{g} Enantiomer selectivity (*E*-value) was calculated from ee_s and ee_p.

^h The *E*-factor is equal to the kg waste (acetaldehyde and a small excess of vinyl acetate) divided by kg products (the enantiopure acetate and alcohol). Recyclable factors such as CO₂ gas and re-used immobilized enzyme are not included in the calculation.

case of 1-phenylethanol (entries 1 and 2), suggesting that the structure of the substrates mainly contributes the facilitation effect caused by the interaction of the solvent–enzyme–substrate.

Finally, to examine the potential of the industrial applicability of liquid CO₂ fluid for biocatalysis, the kinetic resolution of *rac*-1-phenylethanol with vinyl acetate by Novozym 435[®] was performed using a packed-column reactor with a continuous flow of liquid CO₂ and substrates (Table 2). The flow system was run for three operation cycles (24 h/cycle), to stably afford the corresponding enantiopure acetate and alcohol. For the green chemistry concept with a waste prevention goal, Sheldon's *E*-factor¹⁸ has widely been adopted as a green chemistry metric for quickly assessing the environmental impact of manufacture processes. The ideal *E*-factor is zero, which means no waste was generated. Some chemical industry processes, such as fine chemicals and particularly pharmaceuticals, easily have *E*-factor (<0.3) using no organic solvent and a sufficient amount of vinyl acetate.

Conclusion

Table 2

For the first time, liquid CO_2 was found to be superior to other conventional organic solvents for the lipase catalyzing the transesterification of alcohols. Large-scale asymmetric synthesis also successfully achieved waste minimization. On-going studies on liquid CO_2 as a 'green' medium for biocatalyzed synthesis continue in our laboratory.

Caution: All the reactions in liquid carbon dioxide involve high pressures and should only be conducted with appropriate equipment and proper precautions.

References and notes

- Bornscheuer, U. T.; Huisman, G. W.; Kazlauskas, R. J.; Lutz, S.; Moore, J. C.; Robins, K. Nature 2012, 485, 185.
- Nestl, B. M.; Hammer, S. C.; Nebel, B. A.; Hauer, B. Angew. Chem., Int. Ed. 2014, 53, 3070.

- 3. Adlercreutz, P. Chem. Soc. Rev. 2013, 42, 6406.
- Itoh, T. Biotransformation in Ionic Liquid. In *Future Directions in Biocatalysis*; Matsuda, T., Ed.; Elsevier Science B.V.: Amsterdam, 2007; pp 3–20. Chapter 1.
 Hobbs, H. R.; Thomas, N. R. *Chem. Rev.* 2007, 107, 2786.
- Matsuda, T.; Watanabe, K.; Harada, T.; Nakamura, K.; Arita, Y.; Misumi, Y.; Ichikawa, S.; Ikariya, T. Chem. Commun. 2004, 2286.
- 7. Matsuda, T. J. Biosci. Bioeng. 2013, 115, 233.
- 8. DeSimone, J. M.; Tumas, W. Green Chemistry Using Liquid and Supercritical Carbon Dioxide; Oxford University Press: New York, 2003.
- 9. Haberman, J. X.; Irvin, G. C.; John, V. T.; Li, C. J. Green Chem. 1999, 1, 265.
- 10. Phillips, R. S. Trends Biotechnol. 1996, 14, 13.
- 11. Sakai, T.; Kishimoto, T.; Tanaka, Y.; Ema, T.; Utaka, M. *Tetrahedron Lett.* **1998**, 39, 7881.
- Matsuda, T.; Kanamaru, R.; Watanabe, K.; Kamitanaka, T.; Harada, T.; Nakamura, K. Tetrahedron: Asymmetry 2003, 14, 2087.
- 13. Hyatt, J. A. J. Org. Chem. 1984, 49, 5097.
- 14. Laane, C.; Boeren, S.; Vos, K.; Veeger, C. Biotechnol. Bioeng. 2009, 102, 2.
- 15. Batch reactions with liquid CO_2 were conducted as follows: a mixture of alcohol and vinyl acetate, and enzyme was added and sealed in a high-pressureresistant stainless-steel vessel (10 ml volume). The temperature was controlled by a thermostatic bath equipped with a recirculating chiller (Eyela, CCA-1111). CO_2 gas was sent into the vessel by a CO_2 pump (Jasco, PU-2080-CO₂ Plus) until the desired pressures were achieved. The vessel was then vigorously stirred with a magnetic bar. At the end of the reaction, the mixtures were collected by placing the vessel on ice and depressuring. The reactants and products were all soluble under the reaction conditions that were confirmed by visual inspection of the reaction mixture in a reactor equipped with sapphire windows (2.5 cm in diameter).

The effect of supercritical CO₂ on the reaction was also investigated under the same reaction conditions but at 40 °C and compared with that of hexane at 40 °C. Supercritical CO₂ (conversion $35.7 \pm 1.3\%$, ee_p >99%) showed a comparable effect with hexane (conversion $35.5 \pm 2.2\%$, ee_p >99%).

- Matsuda, T.; Tsuji, K.; Kamitanaka, T.; Harada, T.; Nakamura, K.; Ikariya, T. Chem. Lett. 2005, 34, 1102.
- 17. Silveira, R. L.; Martinez, J.; Skaf, M. S.; Martinez, L. J. Phys. Chem. B 2012, 116, 5671.
- 18. Sheldon, R. A. Chem. Soc. Rev. 2012, 41, 1437.
- 19. The continuous flow apparatus consisted of a CO₂ gas cylinder, a CO₂ pump (Jasco, PU-2080-CO₂ Plus), a substrate pump (Jasco, PU-2085 Plus), manometers (Taiatsu Techno, Osaka, 15 or 25 MPa), a packed-column reactor (3.94 ml, 28.5 cm long), stop valves (Swagelok, SS3NBS4), a turbulent mixer (a 0.5 ml tube packed with cotton), a thermostatic bath (luchi, TR1), a recirculation chiller (Eyela, CCA-1111), and a back pressure regulator (Jasco, BP-2080).