SUCCESSIVE METHYL MIGRATIONS OCCURRING IN THE ACID TREATMENT OF 1-EPOXYETHYL-1,2,2-TRIMETHYL-CYCLOPENTANE DERTVATIVE

Isao Kitagawa,* Hirotaka Shibuya, Hiromichi Fujioka, Yoshio Yamamoto, Akiharu Kajiwara, Kunihiro Kitamura, Ayako Miyao,
Toshio Hakoshima, and Ken-ichi Tomita
Faculty of Pharmaceutical Sciences, Osaka University 133-1, Yamada-kami, Suita, Osaka 565, Japan

Summary: Acid treatment of (1R,3S,1'S)-1-(1',2'-Epoxyethyl)-1,2,2-trimethyl-3-acetoxymethyl-
 1-oxa-bicyclo[3,3.0]octane derivatives formed via successive methyl migrations followed by an oxorane ring closure.

During the course of our synthetic study on naturally occurring bioactive compounds starting from d-camphor (1), ${ }^{1)}$ we have found that BF_{3}-etherate treatment of an epoxide (6) furnishes three products ($8 \sim \sim \sim \sim \sim 10$) among which $\underset{\sim}{8}$ and $\underset{\sim}{9}$ are l-oxa-bicyclo[3.3.0]octane derivatives formed through successive migrations of methy1 residues (cf. i) and an oxorane ring formation. This paper provides supporting evidence for this interesting finding.

The epoxide ($\underset{\sim}{6}$) was synthesized from d-camphoric acid (2) ${ }^{2}$) which was prepared by nitric acid oxidation of $\underset{\sim}{1}$. Methylation followed by LiAlH_{4} reduction of $\underset{\sim}{2}$ gave a diol (3), ${ }^{3 \text {) }}$ which, on treatment with $\mathrm{Ac}_{2} \mathrm{O}-\mathrm{AcONa}$, furnished a monoacetate (4), oil, $\mathrm{C}_{12} \mathrm{H}_{22}{ }^{\mathrm{O}} 3^{4},{ }^{4}$) $[\alpha]_{\mathrm{D}}+39^{\circ}\left(\mathrm{CHCl}_{3}\right.$), $\operatorname{IR}(f i 1 m) \mathrm{cm}^{-1}: 3440,1737,{ }^{1}{ }_{\mathrm{H}-\mathrm{NMR}}\left(\mathrm{CCl}_{4}\right) \delta: 0.81,0.95,1.00,2.00(\mathrm{a} 113 \mathrm{H}, \mathrm{s}), 3.37,3.50(2 \mathrm{H}$, $\mathrm{ABq}, \mathrm{J}=9,-\mathrm{C}-\mathrm{CH}_{2} \mathrm{OH}$), $3.8-4.1\left(2 \mathrm{H}, \mathrm{AB}\right.$ in $\mathrm{ABX},-\mathrm{CH}-\mathrm{CH}_{2} \mathrm{OAC}$). Pyridinium chlorochromate (PCC) oxidation ${ }^{5}$) of 4 gave an unstable aldehyde which was immeidately subjected to methylenation to furnish a vinyl-acetate (5), oil, $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{2}$, IR (film): $1747,1645,910, \delta\left(\mathrm{CCl}_{4}\right): 3.98(2 \mathrm{H}, \mathrm{d}$, $\mathrm{J}=6$) , 4.8-5.9 (3H, ABC, vinyl). m-Chloroperbenzoic acid oxidation of 5 gave two epoxides, 6 (70\%), oil, $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{3},[\alpha]_{\mathrm{D}}+44^{\circ}\left(\mathrm{CHCl}_{3}\right)$, IR (film): 1744, 870, 814, $\delta\left(\mathrm{CCl}_{4}\right): 0.87,0.90,1.00$,
 oil, $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{3},[\alpha]_{\mathrm{D}}+43^{\circ}\left(\mathrm{CHCl}_{3}\right)$, IR (film): $1741,850,805, \delta\left(\mathrm{CCl}_{4}\right): 0.86,0.92,1.02,1.96$ (all $3 \mathrm{H}, \mathrm{s}$), $2.4-2.9(3 \mathrm{H}, \mathrm{ABC}), 3.8-4.3(2 \mathrm{H}, \mathrm{AB}$ in ABX$)$.

The $C-1$ ' configurations of both epoxides (S for $\underset{\sim}{6,} \mathrm{R}$ for 7) were elucidated by application of the Horeau's method ${ }^{6}$) for respective diol-monoacetates ($6 \mathrm{~b}, 7 \mathrm{~b}$), which were prepared from epoxides ($6, \underset{\sim}{7}$) by LiAlH_{4} reduction (giving $\underset{\sim}{6 a}, \underset{\sim}{7 a}$) followed by partial acetylation: $\underset{\sim}{6 b}, ~ \delta$ $\left(\mathrm{CDCl}_{3}\right): 1.14(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6), 3.76(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6)\left(-\mathrm{CH}(\mathrm{OH})-\mathrm{CH}_{3}\right), 3.8-4.3\left(2 \mathrm{H}, \mathrm{AB}\right.$ in $\mathrm{ABX},-\mathrm{CH}-\mathrm{CH}_{2}-$ $\mathrm{OAc}) ; \underset{\sim}{7 \mathrm{~b}}, \delta\left(\mathrm{CDCI}_{3}\right): 1.08(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6), 3.7-4.2(3 \mathrm{H}, \mathrm{m})$; recovered α-phenylbutyric acid: $[\alpha] \mathrm{D}$ $+4.8^{\circ}$ ($c=1.59$, benzene) in preparation of $\underset{\sim}{c}$ and $-0.9^{\circ}(c=2.19)$ for 7 c .

Treatment of $\underset{\sim}{6}$ in benzene with BF_{3}-etherate at room temp. (20°) for 50 min . furnished three products: $\underset{\sim}{8}(38 \%), \underset{\sim}{9}(13 \%)$, and $\underset{\sim}{10}(42 \%): \underset{\sim}{8}$, oil, $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{3},\left[{ }^{[\alpha]}\right]_{\mathrm{D}}+12^{\circ}\left(\mathrm{CHCl}_{3}\right)$, IR (film) $: 1738, \delta\left(\mathrm{CCl}_{4}\right): 0.90(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7), 0.96,1.09,1.93(\mathrm{all} 3 \mathrm{H}, \mathrm{s}), 3.15(1 \mathrm{H}, \mathrm{d} . \mathrm{d}, \mathrm{J}=8,12,2-$
 $+37^{\circ}\left(\mathrm{CHCl}_{3}\right), \operatorname{IR}(f i l \mathrm{~m}): 1738, \delta\left(\mathrm{CCl}_{4}\right): 0.88(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7), 0.87,1.02,1.96(\mathrm{all} 3 \mathrm{H}, \mathrm{s}), 3.27$ $\left(1 \mathrm{H}, \mathrm{d} . \mathrm{d}, \mathrm{J}=8,9,2-\mathrm{H}_{A}\right), 3.83$ (1H, d.d, $\mathrm{J}=8,6,2-\mathrm{H}_{\mathrm{B}}$), $3.6-4.2$ ($2 \mathrm{H}, \mathrm{AB}$ in $A B X$).

Since $\underset{\sim}{8}$ and $\underset{\sim}{9}$ were respectively shown by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ to possess one sec. and two tert. methyls and two methylene protons attached to a carbon adjacent to an ether oxygen, they were presumed to be products formed from $\underset{\sim}{6}$ via successive methyl migrations as shown in $\underset{\sim}{i}$ (via a, c giving $\underset{\sim}{8}$, while via b, c giving 9). The C-3R configurations of both $\underset{\sim}{8}$ and $\underset{\sim}{9}$ were presumed on the basis of CD analysis ${ }^{7}$) of their lactone derivatives, 11 and 12 , prepared by RuO_{4} oxidation $^{8)}$ of $\underset{\sim}{8}$ and
 $1776,1747, \mathrm{CD}(\mathrm{MeOH}):[\theta]_{217}^{20}-6800$ (neg. max.) ; 12, oil, $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{4},[\alpha]_{\mathrm{D}}+27^{\circ}\left(\mathrm{CHCl}_{3}\right)$, IR ($\mathrm{CC1} 1_{4}$) : 1771. 1748, CD (dioxane): $\left\lceil 01_{223}^{20}-2500\right.$ (neg. max.). Therefore, $8 \underset{\sim}{8}$ and 9 were presumed to be isomeric at their angular configurations. Finally X-ray analysis of the lactone 11 was carried out to obtain a direct proof of the structure.

CRYSTAL DATA: $\mathrm{C}_{13} \mathrm{H}_{20} 0_{4}$, M.W. $=240.30$, monoclinic space group $\mathrm{P}_{1}, \mathrm{a}=8.827(1), \mathrm{b}=7.467$ (1), $c=10.713(1) \AA, B=112.52(1)^{\circ}, \mathrm{z}=2, \mathrm{U}=652.2 \AA^{0}{ }^{3}, \mathrm{D}_{\mathrm{x}}=1.21 \mathrm{~g} \cdot \mathrm{~cm}^{-3}, \mathrm{D}_{\mathrm{o}}=1.20 \mathrm{~g} \cdot \mathrm{~cm}^{-3} . \mathrm{A}$ total of 1043 non-zero independent reflections with $2 \Theta \leq 120^{\circ}$ were measured on an automated diffractometer using 20-w scan technique and Ni-filtered Cu Ko radiation. The structure was solved by direct method using "MULTAN" program. ${ }^{\text {9 }}$) Block-diagonal least-squares refinement with anisotropic nonhydrogen atoms and isotropic hydrogens reduced R to $0.071 .{ }^{10 \text {) The figure is a }}$ computer generated ORTEP stereoview of the molecule (30% ellipsoids).

The third product 10 , oil, $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{3},[\alpha]_{\mathrm{D}}+9^{\circ}\left(\mathrm{CHCl}_{3}\right)$, IR (film), 3400, 1732, $\delta\left(\mathrm{CCl}_{4}\right)$: $0.88,1.11,2.00(\mathrm{all} 3 \mathrm{H}, \mathrm{s}), 1.07(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7), 3.1-3.6(2 \mathrm{H}, \mathrm{AB}$ in ABX$), 4.07(2 \mathrm{H}, \mathrm{m}), 5.29$

Figure
(1 H , narrow $\mathrm{m}, \mathrm{W}_{\mathrm{h} / 2}=5,=\mathrm{CH}=\mathrm{C}=$), was shown to possess one sec. and two tert. methyls and one olefinic proton and was presumed to be derived from $\underset{\sim}{i} v i a$ deprotonation (route d). The structure 10 was further substantiated by a fact that BF_{3}-etherate treatment of 10 in benzene at room temp. for 24 hr gave $\underset{\sim}{8}(51 \%)$ and $\underset{\sim}{9}$ (9\%) with recovery of $\underset{\sim}{10}$ (33\%).

The successive methyl migrations presented here are reminiscent of a biogenetic pathway from cuparane-type (ii) to trichothecane-type (iii) sesquiterpenes. ${ }^{11 \text {) The behavior of minor }}$ epoxide (7) against acid is under investigation.

References and Footnotes

1) I. Kitagawa, H. Shibuya, H. Fujioka, A. Kajiwara, Y. Yamamoto, A. Takagi, K. Suzuki, M. Hori, 22nd Symposium on the Chemistry of Natural Products, Fukuoka, 1979, Symposium Papers, p. 132.
2) J. Bredt, Chem. Ber., 26, 3047 (1893).
3) R. R. Sauers, J. Am. Chem. Soc., 81, 925 (1959).
4) Compounds given with the chemical formulae gave the satisfactory analytical values.
5) E. J. Corey and J. W. Suggs, Tetrahedron Lett., 1975, 2647.
6) A. Horeau, Tetrahedron Lett., 1961, 506; 1962, 965.
7) G. Snatzke, H. Ripperger, C. Horstmann, and K. Schreiber, Tetrahedron, 22, 3103 (1966).
8) P. D. Hobbs and P. D. Magnus, J. Am. Chem. Soc., 98, 4594 (1976).
9) G. Germain, P. Main, and M. M. Woolfson, Acta Cryst., A27, 368 (1971).
10) The atomic coordinates, the bond lengths and angles, and $F_{0}-F_{c}$ structure factors for this work are available on request from the Director of the Cambridge Crystallographic Data Centre, University Chemical Laboratory, Lensfield, Cambridge CB2 IEW.
11) B. MHller and C. Tamm, Helv. Chim. Acta, 58, 483 (1975).
(Received in Japan 16 February 1980)
