IRYANTHERINS, LIGNOFLAVONOIDS OF NOVEL STRUCTURAL TYPES FROM THE MYRISTICACEAE*

LUCIA M. CONSERVA, MASSAYOSHI YOSHIDA, OTTO R. GOTTLIEB, JUAN C. MARTINEZ V.† and HUGO E. GOTTLIEB‡

Instituto de Química, Universidade de São Paulo, 05508 São Paulo, SP, Brazil; †Departamento de Química, Universidad Nacional de Colombia, AA 14490 Bogotá, Colombia; ‡Department of Chemistry, Bar Ilan University, Ramat Gan, Israel

(Received in revised form 13 March 1990)

Key Word Index—Iryanthera laevis; I. ulei; I. paraensis; Myristicaceae; dihydrochalcones; lignoflavonoids; iryantherins, phenol cinnamylation.

Abstract—Iryanthera laevis, I. ulei and I. paraensis contain a series of novel lignoflavonoids the formation of which can be rationalized by the cinnamylation of the phloroglucinol type A-ring of a dihydrochalcone. The lignoid attachments of the flavonoid moieties consist of an arylvinylmethyl group in iryantherin-A, of 1,4-diaryl-2,3-dimethyl-n-butyl groups in iryantherins B and C and of 3-aryl-2-cinnamyl-n-propyl groups in iryantherins D and E. The construction of iryantherin-F requires oxidative addition of the vinyl unit of an iryantherin-A type compound to the A-ring of a second dihydrochalcone moiety.

INTRODUCTION

Iryanthera laevis Markgr. (Myristicaceae) has been reported to contain the dihydrochalcone 1 in wood [3], fruit [4] and bark [5] accompanied by two ligno-[i.e. $(C_6 \cdot C_3)_n$ -substituted] derivatives of 1 in fruit and bark for which constitutions 2 (now designated iryantherin-A) [4] and 3a (now designated iryantherin-B [5, 6] have been proposed respectively. The present work describes the occurrence in the same fruit extract of further derivatives of this type, namely 4a (iryantherin-C), 5a (iryantherin-D) and 5b (iryantherin-E). Bark of *I. ulei* Warb. was also found to contain 1, 3a, 5a and 5b, besides the lignobisdihydrochalcone 6 (iryantherin-F). Bark of a specimen tentatively identified with *I. paraensis* Huber yielded 1 and 6.

RESULTS

The comparison of the ¹H and ¹³C NMR spectra of all six lignoflavonoids with the analogous spectra of 1 (Tables 1 and 2) provided evidence for the existence of the 4,2',4'6'- or (in the numbering system adopted in the present paper) 4,11,13,15-tetraoxygenated dihydrochalcone moiety.

The ¹H NMR (Tables 1 and 3) and ¹³C NMR (Tables 2 and 4) spectra for **4a** established the partial formula $C_{35}H_{36}$. The spectra also indicated the presence of two methoxyls, as well as of one carbonyl and the compound gives a tetraacetate (4b). The formula can thus be expanded to C₃₂H₂₆CO(OH)₄(OMe)₂. The mass spectrum did not show a molecular ion peak, but included two pairs of peaks at m/z 477 [M-a]/107 (a) and m/z 421 [M -c]/163 (c) (4a) the m/z values of which both add up to 584, the probable M, of the compound. Hence the molecular formula can be written $C_{35}H_{36}O_8$ or, in expanded form, $C_{32}H_{26}CO \cdot O(OH)_4(OMe)_2$. This fact and comparison of the NMR spectra of the iryantherins B (3a) and C led to the structural proposal 4a for the latter compound. All NMR assignments for 4a were based on ¹H⁻¹H and ¹H⁻¹³C shift correlated 2D spectroscopy (Table 5). This refers inclusively to the doublet at $\delta 3.91$ (J = 4.25 Hz) which can only represent H-7' and correlates with the signals at δ 164.71 (obligatorily representing C-11), 159.91 (C-13), as well as 106.64 (C-12) and 115.67 (C-1'). The H-7'/C-11 correlation eliminates the structural alternative in which C-7' of the lignoid chain is connected to C-14 and the two ether functions of the flavonoid Aring appear at interchanged positions.

The ¹H NMR (Tables 1 and 3) and ¹³C NMR (Tables 2 and 4) spectra in combination with low resolution mass spectral M, determinations established formulas $C_{34}H_{32}O_7$ and $C_{35}H_{34}O_7$ respectively for 5a and 5b. Iryantherin-D (5a) gives a tetraacetate (5c) and includes one methoxyl and one carbonyl, while iryantherin-E (5b) gives a triacetate (5d) and includes two methoxyls and a carbonyl (Tables 1-4). The formulae can thus be expanded to C₃₂H₂₅CO O(OH)₄OMe (5a) and $C_{32}H_{25}CO \cdot O(OH)_3(OMe)_2$ (5b). The mass spectra of both compounds include four pairs of peaks at m/z M -a/a, M-b/b, M-c/c and M-d/d and m/z values of which all add up to the respective M_ss 552 (5a) and 566 (5b). Fragments a-d stemming from both compounds show identical m/z values, in contrast to fragment M - c**d**, m/z 165 for **5a** and 179 for **5b**. Thus the additional 14 mass units which characterize 5b must be associated with the flavonoid A ring. The central evidence for the indi-

Dedicated to Prof. G. B. Marini-Bettolo on the occasion of his 75th anniversary.

^{*}Part 32 in the series 'The Chemistry of Brazilian Myristicaceae'. For Part 31 see ref. [1]. Part 11 in the series 'The Chemistry of Colombian Myristicaceae'. For Part 10 see ref. [2]. Based in part on the Doctorate thesis presented by L.M.C. to Universidade de São Paulo (1990).

cated structures comes from the single axial proton at C-8' ($\delta 2.31$). This was correlated with five vicinal protons (Table 6) belonging to a carbinolic-benzylic methine at C-7' ($\delta 4.81$, d, J_{ax-ax} = 9.07 Hz), a benzylic methylene at C-9' ($\delta 2.41$, 2.90) and an allylic methylene at C-9'' ($\delta 2.0$, 2.13). The latter feature is included in a 4-hydroxy-cinnamyl unit (Tables 3 and 4). For **5a** no structural alternatives are admissible as the isolated aromatic proton of the flavonoid ring is flanked by two hydroxyls

(C-12, δ 96.08) [4]. Besides, it is with this C-12 signal and not with the signal of the C-substituted C-14 (δ 101.99) that correlation of the proton signal due to the chelatogenic proton (δ 13.78) can be demonstrated (Table 6). Compound **5b** (Tables 1–4 and 7) is represented by a structure in which both methoxyls are flanked by at least one unsubstituted position (δ 55.48) and the isolated aromatic proton is flanked by at least one ether group (C-12, δ 90.76). Hence the alternative 7 cannot a priori be

Н	1 [3]	2 [4]	3b	4a	4b	5a	5c	5b	5d		6
2,6	7.15	7.15	7.3-6.7	7.21	7.16	6.68	6.91	7.17	7.13	7.21	7.15
	d, 9	d, 8.6	m	d, 8.6	d, 6.7	S	d, 8.5	d, 8.6	d, 8.2	d, 8.5	d, 8.5
3,5	6.82	6.75	7.36.7	6.85	6.84	6.68	6.71	6.83	6.81	6.85	6.83
	d, 9	d, 8.6	m	d, 8.6	d, 6.7	<u>s</u>	d, 8.5	d, 8.6	d, 8.2	d, 8.5	d, 8.5
MeO-4	3.74	3.75	3.69	3.76	3.75	3.72	3.75	3.78	3.78	3.76	3.75
	<i>S</i>	S	s	S	S	S	\$	S	5	S	\$
7,7	2.87	3.4-2.6	3.1-2.9	2.92	2.86	2.73	2.78	2.92	3.1-2.9	2.93	2.83
	t, 7	m	m	m	m	m	t, 7.5	m	m	t, 7.5	t, 7.5
8,8	3.26	3.4-2.6	3.1-2.9	3.32	3.07	3.11	3.04	3.28	3.1-2.9	3.36	3.19
	t, 7	m	m	m	m	m	t, 7.5	m	m	t, 7.5	t, 7.5
HO-11	13.90	14.55		14.41	_	13.78		14.41	-	13.85	14.68
	S	5		S		S		\$	-	5	<u>s</u>
12	5.95			_		5.99	6.52	5.93	6.38		_
	d, 2	_				S	S	S	5		—
14	6.04	6.17	6.46	6.19	6.77	_			_	6.31	6.06
	d, 2	S	5	<i>s</i>	S	_				5	\$
MeO-15	3.88	3.85	3.76	3.95	3.91	_		3.78	3.75	3.89	3.99
	S	S	8	S	5			S	S	\$	s

Table 1. ¹H NMR data for flavonoid units of iryantherins (2, 4a, 5a, 5b, 6) and of iryantherin acetates (3b, 4b, 5c, 5d)

Table 2. ¹³C NMR data for flavonoid units of iryantherins (2, 3a, 4a, 5a, 5b, 6) and of iryantherin acetates (3b, 4b, 5e, 5d)

с	1 [3]	2 [4]	3a [6]	3b	4 a	4b	5a	5c	5b	5d		6
1	134.50	134.6	134.53	133.58	134.66	134.19	133.77	134.90	133.78	135.04	134.58	134.32
2,6	130.13	130.1	130.11	129.47	130.21	130.11	129.65	129.19	129.34	129.34	130.11	130.21
3,5	114.46	114.6	114.47	113.83	114.55	114.52	114.22	113.70	113.81	113.83	114.61	114.55
4	158.84	158.9	158.83	157.93	158.88	158.94	158.51	157.73	157.81	157.88	158.97	159.03
MeO-4	55.33	55.4	55.33	55.31	55.40	55.40	55.24	55.22	55.26	55.25	55.42	55.42
7	30.68	30.7	30.68	29.03	30.46	29.79	30.04	28.89	29.98	29.66	30.60	30.51
8	46.87	46.7	46.78	45.43	47.06	46.45	45.84	45.68	46.01	45.98	46.71	46.97
9	205.15	205.0	205.30	201.93	205.91	201.21	205.27	201.09	204.77	201.32	205.33	205.78
10	105.73	105.7	105.63	122.44	107.55	120.73	105.36	120.73	105.26	116.98	106.27	105.95
11	168.26	165.8	166.20		164.71	146.93	165.85	146.40	164.69	147.39	162.95	165.11
12	96.78	114.8	112.10	122.44	106.64	112.91	96.08	109.36	90.76	97.60	110.22	101.31
13	165.52	163.1	163.12		159.91	155.82	159.12	150.05	161.11	157.10	149.91	167.99
14	91.81	91.8	91.70	105.04	91.11	98.72	101.99	113.20	102.65	108.08	91.93	86.50
15	164.46	162.6	162.08	155.70	162.16	157.73	162.97	153.25	160.93	157.10	162.17	159.78
MeO-15	56.11	55.9	55.74	55.92	56.31	56.66		—	55.48	56.80	56.45	56.57

dismissed. However, upon acetylation of HO-11 one observes a signal shift towards lower field of 6.84 ppm (90.76 \rightarrow 97.60) for the unsubstituted carbon and of 5.43 ppm (102.65 \rightarrow 108.08) for the C-substituted carbon (cf. positions 12 and 14 in Table 2) in good agreement with the $\Delta\delta$ values expected for **5b** where the former carbon occupies position 12 (calcd shift 6.2 ppm [7]) and where the latter carbon occupies position 14 (calcd shift 5.6 ppm [7]). In the case of 7 the observed shift values for the unsubstituted and substituted carbons (resp. 6.84 and 5.43 ppm) compare unfavourably with the calculated values (resp. 5.6 and 6.2 ppm).

Ageing of a solution of iryantherin-E (5b) in chloroform produced increasing quantities of 8 and of 4-hydroxybenzaldehyde. Spectral comparison of 5b (Tables 1-4) and of 8 (Experimental) confirmed the structural proposal for the latter compound.

In iryantherin-F (6) two dihydrochalcone units (Tables 1 and 2) are connected by a lignoid $CH(Ar) \cdot CH(OR) \cdot CH_2$ -bridge (cf. positions 1'-9' in Tables 3 and 4). The methylene protons of the latter are represented by two double doublets with large vicinal coupling constants ($\delta 2.78$, J = 15, 9.5 Hz; 2.64, J = 15, 7.5 Hz). This demonstrates their rigid positions and hence inclusion, together with the vicinal CHOR (δ 5.35, ddd, J = 9.5, 7.5, 4 Hz) in a pentacycle. In contrast, the doubly benzylic methine terminal of the bridge ($\delta 4.63$, d, J =4 Hz) can escape eclipsation and shows a smaller vicinal coupling constant. The lignoid aryl of this terminal is 2,4,5-trihydroxylated, as evidenced by two aromatic proton singlets ($\delta 6.59$ and 6.84) and a UV shift upon addition of $H_3BO_3 + NaOAc$ typical of catechols. The bridge terminals must be inserted into flavonoid Arings, one (evidently the methylene) into a ring sustaining, besides the methoxyl, an additional ether function. The methoxyl (δ ca 56.5) and the ether both must be vicinal to the unsubstituted position, as demonstrated by the relatively low chemical shift ($\delta 87.79$) of the corresponding

Table 3. ¹H NMR data for lignoid units of iryantherins (2, 4a, 5a, 5b, 6) and of iryantherin acetates (3b, 4b, 5c, 5d)

н	2 [4]	3b	4a	4b	5a	5c	5b	5d	6
2',6'	7.20	7.3-6.7			7.38	7.32	7.15	7.36	
	d, 8.6	m	-		d, 8.5	d, 8.5	d, 8.6	d, 8.0	And an and a second sec
3',5'	6.85	7.3–6.7	_		6.92	7.12	6.74	7.13	
	d, 8.5	m	***		d, 8.5	d, 8.5	d, 8.6	d, 8	
3'			6.62	6.88		TO THE REAL PROPERTY OF THE PR			6.59
			S	S					S
6′			6.76	7.02					6.84
			s	5					5
7'	5.0-4.9	4.10	3.91	3.80	4.81	4.8	4.72	4.81	4.63
	m	d, 4.3	d, 4.3	d, 7.7	d, 9.1	d, 8.5	d, 8.5	d, 8	d, 4
8′	6.6-6.0	2.2-1.6	1.83	1.54	2.31	2.2	2.17	2.27	5.35
	m	m	m	dq 7.7, 7.4	m	т	m	т	ddd 9.5, 7.5, 4
9'a					2.41	2.40	2.39	2.63	2.78
	5.0-4.9				m	dd, 16.5, 9.5	dd, 16.4, 9.7	m	dd, 15, 9.5
	m				2.9	2.74	2.85	2.87	2.64
9′Ъ				_	m	dd, 16.5, 5.5	m	m	dd, 15, 7.5
Me-9'		0.65	0.92	0.79	_				
		d, 6.8	d, 7.1	d, 7.4	-	-	100.0		
2".6"		7.36.7	6.63	6.85	7.20	7.27	7.27	7.28	
,-		m	d. 8.5	d, 6.2	d, 8.6	d, 8.5	d, 8.4	d, 8	
3".5"		7.3-6.7	6.53	7.18	6.76	7.01	6.86	7.01	2000-000
,		m	d, 8.5	d, 6.2	d, 8.6	d, 8.5	d, 8.4	d, 8	
7″		2.5-2.1	2.23	2.42	6.29	6.30	6.23	6.29	
		m	br d 7.4	m	d, 15.8	br d 16	d, 15.6	d, 15.5	
8″		2.2-1.6	1.74	2.42	6.0	5.93	5.96	5.94	BRAD, Blanc
		m	m	m	m	ddd, 16, 8, 6	m	m	
9″a					2.0	1.99	2.07	2.05	
	_			_	m	br dt	m	m	-
						14.5, 8.5			
9″Ъ				_	2.13	2.2	2.17	2.2	
					m	m	m	т	
Me-9″		0.84	0.44	0.75	_				
		d, 6.6	d, 6.8	d, 6.9					

Table 4. ¹³C NMR data for lignoid units of iryantherins (2, 3a, 4a, 5a, 5b, 6) and of iryantherin acetates (3b, 4b, 5c, 5d)

с	2 [4]	3a [6]	3b	4a	4b	5a	5c	5b	5d	6
1'	135.3	133.21	138.67	115.67	124.19	130.89	136.19	131.46	136.85	107.53
2′	129.3	130.56	129.5	146.17	150.75	129.65	128.04	128.73	128.07	149.91
3′	115.4	115.24*	121.41*	104.15	112.28	116.28	121.84	115.54	121.82	103.84
4′	156.1	155.86	148.86	145.36	142.47	158.51	150.85	155.80	150.78	146.12
5'	115.4	115.24*	121.41*	142.15	138.90	116.28	121.84	115.54	121.82	142.18
6'	129.3	130.56	129.5	116.17	124.59	129.65	128.04	128.73	128.07	117.20
7'	44.1	44.05	43.5	38.06	39.19	84.01	82.39	82.91	82.03	37.20
8′	141.0	36.06	35.31	41.15	42.96	37.59	36.96	37.58	37.21	87.55
9'	111.3	11.79	10.66	12.74	11.39	25.89	25.14	24.18	24.39	27.72
1″	_	133.21	138.67	132.56	138.90	129.98	133.18	130.34	133.64	-
2",6"		130.72	130.36	130.21	130.11	127.98	126.94	127.34	126.92	
3″,5″		115.53*	120.91*	115.39	122.16	116.03	121.63	115.33	121.59	
4″		156.10	149.21	155.91	149.84	157.48	149.84	154.77	149.87	
7″		42.38	41.09	42.72	42.14	132.50	131.86	131.70	131.71	
8″		34.78	32.28	35.03	34.32	124.37	126.22	124.25	126.61	
9″		12.86	14.0	15.96	14.33	36.11	35.28	35.50	35.37	

			Correlated signals				
Signals	Н	н	C short range	C long range			
14.41	HO-11			164.71, 107.55, 106.64			
7.21	2,6	6.85, 2.92	130.21	158.88, 130.21			
			(114.55)				
6.85	3,5	7.21	114.55	134.66, 114.55			
			(130.21)				
6.76	6'		116.17	146.17, 145.36			
				(142.15, 116.17)			
6.63	2",6"	6.53, 2.23	130.21	155.91, 130.21			
6.62	3′		104.15	142.15, 115.67			
				(146.17, 145.36, 104.15)			
6.53	3",5"	6.63	115.39	132.56, 115.39			
6.19	14	3.95	91.11	159.91, 107.55, 91.11			
				(162.16, 106.64)			
3.95	MeO-15	6.19	56.31	162.16, 56.31			
3.91	7'	1.83	38.06	164.71, 159.91, 115.67, 106.64			
3.76	MeO-4		55.40	158.88, 55.40			
3.32	8,8	2.92	47.06	205.91			
2.92	7,7	7.21, 3.32	30.46	205.91, 134.66, 130.21			
2.23	7″	6.63, 1.74	42.72	132.56, 130.21			
1.83	8′	3.91, 0.92	41.15				
1.74	8″	2.23, 0.44	35.03				
0.92	9′	1.83	12.74	38.06			
0.44	9″	1.74	15.98				

Table 5. ¹H-¹H and ¹H-¹³C 2D NMR correlations for compound 4a

Table 6. ¹H-¹H and ¹H-¹³C 2D NMR correlations for compound 5a

		Correlated signals	
Signals	Н	Н	C long range
13.78	HO-11		165.89, 105.36, 96,08
7.38	2′,6′	6.92 (4.81)	158.51, 129.65
7.20	2",6"	6.76 (6.29)	157.48, 127.98
6.92	3',5'	7.38	130.89, 116.28
6.76	3",5"	7.20	129.98, 116.03
6.68	2,3,4,5	(2.73)	133.77, 114.22
6.29	7"	(7.20) 6.0	
6.0	8″	6.29, 2.13, 2.0	
5.99	12		105.36, 101.99, 96.08
4.81	7′	2.90, 2.31 (7.38)	
3.72	MeO-4		158.51, 55.24
3.11	8,8	2.73	205.27
2.90	9′Ъ	4.81, 2.41, 2.31	
2.73	7,7	(6.68), 3.11	133.77, 129.65
2.41	9'a	2.90, 2.31	
2.31	8′	4.81, 2.90, 2.41, 2.13, 2.0	
2.13	9″b	6.0, 2.31, 2.0	
2.0	9″a	6.0, 2.31, 2.13	

C-14". The methine bridge terminal must be inserted between two hydroxyls, since the unsubstituted position cannot be flanked by two such groups (δ 91.93). Indeed only one of the hydroxyl groups is chelated and hence vicinal to the carbonyl.

DISCUSSION

More than 20 years ago Ollis and one of us [8] proposed the alkylation of a phenolic unit by a cinnamyl pyrophosphate or its biological equivalent to explain the

Table 7. ${}^{1}H-{}^{1}H$ 2D NMR correlations for compound **Sb**

Signals	Н	Correlated H signals				
7.27	2",6"	6.86 (5.96)				
7.17	2,6	6.83				
7.15	2',6'	6.74				
6.86	3",5"	7.27				
6.83	3,5	7.17				
6.74	3',5'	7.15				
6.23	7"	5.96				
5.96	8″	6.23, 2.17, 2.07 (7.27)				
4.72	7′	2.17				
3.28	8,8	2.92				
2.92	7,7	3.28				
2.85	9′b	2.39				
2.39	9'a	2.85, 2.17				
2.17	8′	4.72, 2.39, 2.07				
2.07	9″	5.96, 2.17				

biosynthesis of neoflavonoids. This then new biogenetic pathway is attractive in that it accounts for the observed natural co-occurrence of dalbergiquinols such as 9 [9] and cinnamylphenols such as 10 [10] in *Dalbergia* and *Machaerium* species (family Fabaceae). Although the mechanistic feasibility of this proposal was later demonstrated by the observation that cinnamyl alcohols condense in aqueous acid solutions to yield both, 3,3diarylpropenes and cinnamylphenols [11-14], to the best of our knowledge analogously formed pairs of compounds have not since been isolated from natural sources.

Thus the present report constitutes a welcome sequel to the neoflavonoid case. Indeed again the biosynthesis of two co-occurring types of natural products can be explained by the cinnamylation reaction. As in the formation of dalbergiquinols, attack of a phenol (here the phloroglucinol unit of 1) on C-7 or C-9 of 4-hydroxycinnamyl alcohol would lead respectively to iryantherin-A (2) or compound 11. Although 11 has not yet been found it may well represent the intermediate which, by reaction with C-9 of a second 4-hydroxycinnamyl alcohol unit, leads to a group of compounds such as the iryantherins D (5a) and E (5b). Oxidative coupling of a precursor of the iryantherin-A type such as 2 and a second dihydrochalcone unit (1) would be expected to lead to compounds of the iryantherin-F type such as 6.

The nucleophilic attack by a phenol on a cinnamyl alcohol, which is the major step in the proposed biosynthetic route to the iryantherins A and F on one hand and to the iryantherins D and E on the other, is mechanistically equivalent to the transformation of cinnamyl alcohols respectively into allylphenols and propenylphenols [8]. Oxidative coupling of propenylphenols is postulated to involve quinonemethide intermediates such as 12, which then may either lead on to neolignans, the most conspicuous constitutents of Myristicaceae [15] or, after condensation with dihydrochalcones (1), to iryantherins B (3a) and ultimately C (4a).

EXPERIMENTAL

Fruits of Iryanthera laevis. Identification, collection, separation into parts and extraction have been described in detail [4]. The extract from aril labelled A2 (30 g) [4] gave (besides 1, 15-de-O-methyl-1 and 2 [4]) by repeated silica CC and by prep. TLC (silica, C_6H_{14} -Me₂CO, 4:1, followed by CHCl₃-Me₂CO, 4:1) 5b (9 mg). The extract from mesocarp labelled M2 (25 g) was submitted to CC over silica. Elution with light petrol-EtOAc mixtures of the indicated proportions gave fractions I (17:3, 7 g), composed mainly of triglycerides; II (7:3, 4 g), composed mainly of 1 (3.4 g); III (3:2, 5 g), separated by rechromatography into 1 (1.6 g) and a mixture which gave after repeated CC (silica) and purification by TLC (silica, C₆H₁₄-Me₂CO, 4:1, followed by CHCl₃-Me₂CO, 4:1) **5b** (9 mg); IV (3:2, 430 mg) which gave by the same treatment 5a (10 mg); and V (3:7, 6 g) composed of polar compounds. The extract from kernels labelled K2 (10 g) was treated in the same way. Final TLC (silica, CH₂Cl₂ with a trace of EtOH) gave 4a (62 mg).

Bark of Iryanthera ulei. Identified by the wood anatomists Arthur Loureiro of Instituto Nacional de Pesquisas da Amazonia, Manaus and Pedro Lisboa of Museu Paraense Emílio Goeldi, Bclém. Air-dried powdered bark (660 g) was extracted in a Soxhlet successively with C_6H_{14} , CH_2Cl_2 and EtOH. The solvents were evapd and the residues labelled respectively A (2.7 g), B (11.7 g) and C (7.7 g). A was partitioned between C_6H_{14} and MeOH-H₂O (9:1). The MeOH solution was evapd. The residue (560 mg) was purified by flash chromatography (silica, C_6H_6 -EtOAc, 3:2) into 1 (410 mg). B was partitioned between CHCl₃ and MeOH-H₂O, 3:2. The ppt. (8.3 g) was removed by

	Irradiated H			Effect	n		
H	δ	Н	δ		Н	δ	
2,6	7.21	3,5	6.85	$d \rightarrow s$	7	2.93	Narrowing
7,7	2.93	8,8	3.36	$t \rightarrow s$	2,6	7.21	Narrowing
8,8	3.36	7,7	2.93	$t \rightarrow s$			-
14	6.31	HO-11	13.85	NOE			
3'	6.59	HO-11	13.85	NOE	7′	4.63	NOE
7'	4.63	3′	6.59	NOE	14	6.31	NOE
8'	5.35	3′	6.59	NOE	7′	4.63	$d \rightarrow s$
		9′	2.64	$dd \rightarrow d$	9′	2.78	Narrowing
2",6"	7.15	3″,5″	6.83	$d \rightarrow s$			-
7",7"	2.83	8″,8″	3.19	$t \rightarrow s$	2",6"	7.15	Narrowing
8",8"	3.19	7",7"	2.83	Narrowing			•
14″	6.06	3'	6.59	NOE			

Table 8. Double irradiation ¹H NMR data for compound 6

filtration, it consisted chiefly of 1. The CHCl₃ solution was evapd. The residue (3.3 g) was submitted to flash chromatography (silica, C_6H_{14} -Me₂CO, 4:1), which gave in order, after purification by TLC (silica C_6H_6 -Et₂O, 9:11), **5b** (26 mg) and **6** (6 mg). C was partitioned between CHCl₃ and EtOH-H₂O, 3:2. The ppt. (1 g) was removed by filtration. The CHCl₃ solution was evapd and the residue (6.4 g) submitted to flash chromatography (silica, CH₂Cl₂). The less polar fractions gave 1 (0.730 g) and the more polar ones gave in order, after purification by TLC (silica, C_6H_6 -Et₂O, 6:4), **5a** (21 mg) and **3a** (28 mg).

Bark of Iryanthera paraensis. Identification tentative. Airdried, powdered material (900 mg), treated as described for I. ulei, gave 1 (880 mg) and 6 (3 mg).

Iryantherin-B (3a). IR v_{msr}^{KBr} cm⁻¹: 3365, 1610, 1512, 1465, 1446, 1244, 1175, 1033, 826, 756. ¹³C NMR: Tables 2 and 4.

Iryantherin-B tetraacetate (3b). IR v_{max}^{IfC13} cm⁻¹: 1767, 1694, 1608, 1583, 1513. ¹H NMR: Tables 1 and 3. ¹³C NMR: Tables 2 and 4. MS (70 eV) *m/z* (rel. int.): 738 ([M], 0), 534 ([M-d+1], 9), 533 ([M-d], 25), 492 ([M-d+1-42], 12), 491 ([M-d-42], 37), 449 ([M-d-84], 37), 407 ([M-d-126], 38), 135 ([c], 6), 134 ([c-1], 11), 121 ([b], 100), 107 ([a], 50).

Iryantherin-C (4a). (Found: C, 72.22; H, 6.08. $C_{35}H_{36}O_8$ requires: C, 71.92; H, 6.16). IR v_{max}^{flm} cm⁻¹: 3390 (OH), 1620 (OH . . . O=C), 1600, 1515, 1450, 1035, 825, 760. ¹H NMR: Tables 1 and 3. ¹³C NMR: Tables 2 and 4. MS (70 eV) *m/z* (rel. int.); 584 ([M], 0), 477 ([M-a], 1.6), 421 ([M-c], 100), 163 ([c], 1), 121 ([b], 50), 107 ([a], 22).

Iryantherin-C tetraacetate (4b). ¹H NMR: Tables 1 and 3. ¹³C NMR: Tables 2 and 4. MS (70 eV), m/z (rel. int.): 752 ([M], 0), 547 ([M-c], 34), 505 ([M-c-42], 43), 463 ([M-c-84], 64), 421 ([M-c-126], 43), 121 ([b], 100), 107 ([a-42], 53).

Iryantherin-D (5a). (Found: C, 73.69; H, $5.71.C_{34}H_{32}O_7$ requires: C, 73.91; H, 5.79). UV λ_{mex}^{MeOH} nm: 269, 293 (e 4200, 4250). IR ν_{max}^{KB} cm⁻¹: 3354, 1610, 1511, 1228, 1173, 1037, 967, 923, 832. ¹H NMR: Tables 1 and 3. ¹³C NMR: Tables 2 and 4. MS (70 eV) *m/z* (rel. int.): 552 ([M], 1), 445 ([M-a], 3), 431 ([M-b], 1), 417 ([M-c], 2), 300 ([M-d], 2), 252 ([d], 45), 165 ([M-c-d], 7), 153 (43), 145 (50), 135 ([c], 8), 134 ([c-1], 38), 121 ([b], 100), 107 ([a], 50).

Iryantherin-D-tetraacetate (5c). ¹H NMR: Tables 1 and 3. ¹³C NMR: Tables 2 and 4.

Iryantherin-E (**5b**). (Found: C, 73.92; H, 5.92. $C_{35}H_{34}O_7$ requires: C, 74.20, H, 6.00). UV λ_{max}^{MeOH} nm: 269, 294 (ϵ 4150, 4100). IR ν_{max}^{KB} cm⁻¹: 3407, 1614, 1593, 1513, 1450, 1245, 1174, 1033, 967, 916, 829. ¹H NMR: Tables 1 and 3. ¹³C NMR: Tables 2 and 4. MS (70 eV) *m/z* (rel. int.): 566 ([M], 5), 459 ([M-**a**], 6), 445 ([M-**b**], 2), 431 ([M-**c**], 10), 315 ([M-**d**+1], 10), 252 ([**d**], 7), 251 ([**d**-1], 13), 179 ([M-**c**-**d**], 21), 135 ([**c**], 27), 121 ([**b**], 100), 107 ([**a**], 29).

Iryantherin-E-triacetate (5d). IR $v_{max}^{CHCl_3}$ cm⁻¹: 1771, 1686, 1615, 1582, 1513, 1466, 1246, 1192, 1107, 1037, 969, 913, 829, 756. ¹H NMR: Tables 1 and 3. ¹³C NMR: Tables 2 and 4.

Degradation product (8). ¹H NMR (200 MHz, CDCl₃) δ : 7.17 (d, J = 8.5 Hz, H-2, H-6), 6.85 (d, J = 8.5 Hz, H-3, H-5), 2.93 (m, H-7), 3.3 (m, H-8), 5.95 (s, H-12), 7.23 (d, J = 8.6 Hz, H-2', H-6'), 6.86 (d, J = 8.6 Hz, H-3', H-5'), 4.80 (d, J = 8.8 Hz, H-7'), 2.65 (m, H-8'), 2.38 (m, H-9'a), 2.90 (m, H-9'b), 9.55 (t, J = 1.25 Hz, H-8''), 2.35 (m, H-9''a, H-9''b), 3.80 (s, MeO-4, MeO-15), 14.38, (s, HO-11). ¹³C NMR (50 MHz, CDCl₃) (DEPT-135) δ : 133.73 (C, C-1), 129.34 (CH, C-2, C-6), 113.84 (CH, C-3, C-5), 157.81 (C, C-4), 29.67 (CH₂, C-7), 46.04 (CH₂, C-8), 204.86 (C, C-9), 105.41 (C, C-10), 164.63 (C, C-11), 90.77 (CH, C-12), 160.87 (C, C-13), 102.03 (C, C-14), 161.45 (C, C-15), 130.55 (C, C-1'), 128.64 (CH, C-2', C-6'), 115.73 (CH, C-3', C-5'), 156.11 (C, C-4'), 82.00 (CH, C-7'), 32.82 (CH, C-8'), 24.82 (CH₂, C-9'), 200.04 (C, C-8''), 46.32 (CH₂, C-9''), 55.26 (Me, MeO-4), 55.53 (Me, MeO-15). *Iryantherin*-F (6). (Found: C, 67.01; H, 5.54. $C_{4,3}H_{42}O_{13}$ requires: C, 67.36; H, 5.48). UV λ_{mex}^{MeoH} nm: 280sh, 294 (ϵ 10 100, 11 900); $\lambda_{mex}^{MeoH+NaOAc+H_3BO_3}$ nm: 286, 327sh (ϵ 12 900, 12 000). IR ν_{max}^{MBe} cm⁻¹: 3410, 1614, 1513, 1454, 1245, 1158, 1119, 958, 827, 739. ¹H NMR: Tables 1 and 3. ¹³C NMR: Tables 2 and 4. MS *m/z* (rel. int.): 766 (M, 0), 179 (7), 167 (38), 166 (4), 151 (7), 135 (12), 121 (100).

Notes to spectral data (Tables 1-8). Spectra were obtained for 1, 2, 3a, 4a, 4b, 5a and 6 in (CD₃)₂CO solutions and for 3b, 5b, 5c and 5d in CDCl₃ solutions. ¹H NMR spectra were registered at 60 (2), 80 (3c), 200 (1, 4a, 4b, 5a, 5b, 5d) and 300 (5c, 6) MHz. ¹³C spectra were registered at 20 MHz (2, 3b, 5c, 5d), 50 (1, 4a, 4b, 5a, 5b) and 75 (3a, 6) MHz Additional signals for 3b: ¹H NMR 2.24 (2AcO), 2.29 (2AcO); ¹³C NMR 20.72 (Me), 21.09 (3Me), 169.33 (4CO). 4b: ¹H NMR 2.15, 2.20, 2.27, 2.29 (4AcO); ¹³C NMR 20.43, 20.49, 20.61, 20.95 (4Me); 168.58, 168.97 (2CO), 169.58 (2CO). 5c: ¹H NMR 2.14, 2.25, 2.29, 2.32 (4AcO); ¹³C NMR 20.71, 20.76, 21.10, 21.14 (4Me), 168.21, 169.38 (2CO), 169.01 (2CO). 5d: ¹H NMR 2.16, 2.29, 2.31 (3AcO); ¹³C NMR 20.48 (Me), 21.05 (2Me), 168.78, 169.08, 169.33 (3CO). In Table 1 the second of the two columns for 6 refers to H-2" to H-14". In Tables 1 and 3 the coupling constants, registered jointly with signal multiplicities, are in Hz. In all ¹³C NMR spectra the nature of carbon was ascertained by DEPT-135 experiments. In Table 2 the second of the two columns for 6 refers to C-1" to C-15" and the attributions for each pair of identically numbered carbons are interchangeable except for C-12 (δ 110.98) and C-12" (\$102.0); C-14 (\$91.93) and C-14" (\$87.79). In Table 4 asterisked data may be interchanged with other asterisked data of the same column. In Tables 5-7 data in parentheses represent weak correlations. ¹H and ¹³C NMR data of 1 [3] were thoroughly revised after registry of ¹H-¹³C (HETCOR) 2D NMR long range correlations. Data assigned to C-11 and C-15 in the original communication on 2 [4] were interchanged according to experience gained during the revisions of spectra of 1.

Acknowledgements—The authors are grateful to Dr Lucia M. X. Lopes for advise during a phase of the present study. Work in Brazil was supported by CNPq, CAPES, FINEP and FAPESP and in Colombia by COLCIENCIAS, Segunda Expedición Botánica and Corporación Araracuara.

REFERENCES

- Kato, M. J., Yoshida, M. and Gottlieb, O. R. (1990) Phytochemistry 29, 1799.
- Martinez V., J. C., Yoshida, M. and Gottlieb, O. R. (1990) Phytochemistry 29, 2655.
- 3. Braz-Filho, R., Silva, M. S. da and Gottlieb, O. R. (1980) Phytochemistry 19, 1195.
- Garzon N., L., Cuca S., L. E., Martinez V., J. C., Yoshida, M. and Gottlieb, O. R. (1987) Phytochemistry 26, 2835.
- 5. Villamil Z., E., Cuca S., L. E. and Martinez V., J. C. (1988) Spectros. Int. J. 6, 157.
- Martinez V., J. C. and Cuca S., L. E. (1989) Rev. Colomb. Quim. 18, 37.
- Stothers, J. B. (1972) Carbon-13 NMR Spectroscopy, p. 197. Academic Press, New York.
- 8. Ollis, W. D. and Gottlieb, O. R. (1968) Chem. Commun. 1396.
- Eyton, W. B., Ollis, W. D., Fineberg, M., Gottlieb, O. R., Guimarães, I. S. de S. and Magalhães, M. T. (1965) Tetrahedron 21, 2697.
- Ollis, W. D., Redman, B. T., Sutherland, I. O. and Gottlieb, O. R. (1978) Phytochemistry 17, 1379.

- 11. Mageswaran, S., Ollis, W. D., Roberts, R. J. and Sutherland, I. O. (1969) Tetrahedron Letters 2897.
- 12. Cardillo, G., Cricchio, R. and Merlini, L. (1969) Tetrahedron Letters 907.
- 13. Larkin, J., Nonhebel, D. C. and Wood, H. C. S. (1970) Chem. Commun. 445.
- 14. Jurd, L. (1976) Tetrahedron 25, 1407.
- Gottlieb, O. R. and Yoshida, M. (1989) in Natural Products of Woody Plants: Chemicals Extraneous to the Lignocellulosic Cell Wall (Rowe J. W. and Kirk C. H., eds), p. 439. Springer, Heidelberg.